forked from shiwendai/Faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGpuIndexFlat.cu
596 lines (490 loc) · 18.2 KB
/
GpuIndexFlat.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "GpuIndexFlat.h"
#include "../IndexFlat.h"
#include "GpuResources.h"
#include "impl/FlatIndex.cuh"
#include "utils/CopyUtils.cuh"
#include "utils/DeviceUtils.h"
#include "utils/Float16.cuh"
#include "utils/StaticUtils.h"
#include <thrust/execution_policy.h>
#include <thrust/transform.h>
#include <limits>
namespace faiss { namespace gpu {
/// Default CPU search size for which we use paged copies
constexpr size_t kMinPageSize = (size_t) 256 * 1024 * 1024;
/// Size above which we page copies from the CPU to GPU (non-paged
/// memory usage)
constexpr size_t kNonPinnedPageSize = (size_t) 256 * 1024 * 1024;
GpuIndexFlat::GpuIndexFlat(GpuResources* resources,
const faiss::IndexFlat* index,
GpuIndexFlatConfig config) :
GpuIndex(resources, index->d, index->metric_type, config),
minPagedSize_(kMinPageSize),
config_(config),
data_(nullptr) {
verifySettings_();
// Flat index doesn't need training
this->is_trained = true;
copyFrom(index);
}
GpuIndexFlat::GpuIndexFlat(GpuResources* resources,
int dims,
faiss::MetricType metric,
GpuIndexFlatConfig config) :
GpuIndex(resources, dims, metric, config),
minPagedSize_(kMinPageSize),
config_(config),
data_(nullptr) {
verifySettings_();
// Flat index doesn't need training
this->is_trained = true;
// Construct index
DeviceScope scope(device_);
data_ = new FlatIndex(resources,
dims,
metric == faiss::METRIC_L2,
config_.useFloat16,
config_.useFloat16Accumulator,
config_.storeTransposed,
memorySpace_);
}
GpuIndexFlat::~GpuIndexFlat() {
delete data_;
}
void
GpuIndexFlat::setMinPagingSize(size_t size) {
minPagedSize_ = size;
}
size_t
GpuIndexFlat::getMinPagingSize() const {
return minPagedSize_;
}
void
GpuIndexFlat::copyFrom(const faiss::IndexFlat* index) {
DeviceScope scope(device_);
this->d = index->d;
this->metric_type = index->metric_type;
// GPU code has 32 bit indices
FAISS_THROW_IF_NOT_FMT(index->ntotal <=
(faiss::Index::idx_t) std::numeric_limits<int>::max(),
"GPU index only supports up to %zu indices; "
"attempting to copy CPU index with %zu parameters",
(size_t) std::numeric_limits<int>::max(),
(size_t) index->ntotal);
this->ntotal = index->ntotal;
delete data_;
data_ = new FlatIndex(resources_,
this->d,
index->metric_type == faiss::METRIC_L2,
config_.useFloat16,
config_.useFloat16Accumulator,
config_.storeTransposed,
memorySpace_);
// The index could be empty
if (index->ntotal > 0) {
data_->add(index->xb.data(),
index->ntotal,
resources_->getDefaultStream(device_));
}
}
void
GpuIndexFlat::copyTo(faiss::IndexFlat* index) const {
DeviceScope scope(device_);
index->d = this->d;
index->ntotal = this->ntotal;
index->metric_type = this->metric_type;
FAISS_ASSERT(data_->getSize() == this->ntotal);
index->xb.resize(this->ntotal * this->d);
auto stream = resources_->getDefaultStream(device_);
if (this->ntotal > 0) {
if (config_.useFloat16) {
auto vecFloat32 = data_->getVectorsFloat32Copy(stream);
fromDevice(vecFloat32, index->xb.data(), stream);
} else {
fromDevice(data_->getVectorsFloat32Ref(), index->xb.data(), stream);
}
}
}
size_t
GpuIndexFlat::getNumVecs() const {
return this->ntotal;
}
void
GpuIndexFlat::reset() {
DeviceScope scope(device_);
// Free the underlying memory
data_->reset();
this->ntotal = 0;
}
void
GpuIndexFlat::train(Index::idx_t n, const float* x) {
// nothing to do
}
void
GpuIndexFlat::add(Index::idx_t n, const float* x) {
DeviceScope scope(device_);
// To avoid multiple re-allocations, ensure we have enough storage
// available
data_->reserve(n, resources_->getDefaultStream(device_));
// If we're not operating in float16 mode, we don't need the input
// data to be resident on our device; we can add directly.
if (!config_.useFloat16) {
addImpl_(n, x, nullptr);
} else {
// Otherwise, perform the paging
GpuIndex::add(n, x);
}
}
void
GpuIndexFlat::addImpl_(Index::idx_t n,
const float* x,
const Index::idx_t* ids) {
// Device is already set in GpuIndex::addInternal_
// We do not support add_with_ids
FAISS_THROW_IF_NOT_MSG(!ids, "add_with_ids not supported");
FAISS_THROW_IF_NOT(n > 0);
// Due to GPU indexing in int32, we can't store more than this
// number of vectors on a GPU
FAISS_THROW_IF_NOT_FMT(this->ntotal + n <=
(faiss::Index::idx_t) std::numeric_limits<int>::max(),
"GPU index only supports up to %zu indices",
(size_t) std::numeric_limits<int>::max());
data_->add(x, n, resources_->getDefaultStream(device_));
this->ntotal += n;
}
struct IntToLong {
__device__ long operator()(int v) const { return (long) v; }
};
void
GpuIndexFlat::search(faiss::Index::idx_t n,
const float* x,
faiss::Index::idx_t k,
float* distances,
faiss::Index::idx_t* labels) const {
if (n == 0) {
return;
}
// For now, only support <= max int results
FAISS_THROW_IF_NOT_FMT(n <=
(faiss::Index::idx_t) std::numeric_limits<int>::max(),
"GPU index only supports up to %zu indices",
(size_t) std::numeric_limits<int>::max());
FAISS_THROW_IF_NOT_FMT(k <= 1024,
"GPU only supports k <= 1024 (requested %d)",
(int) k); // select limitation
DeviceScope scope(device_);
auto stream = resources_->getDefaultStream(device_);
// The input vectors may be too large for the GPU, but we still
// assume that the output distances and labels are not.
// Go ahead and make space for output distances and labels on the
// GPU.
// If we reach a point where all inputs are too big, we can add
// another level of tiling.
auto outDistances = toDevice<float, 2>(resources_,
device_,
distances,
stream,
{(int) n, (int) k});
// FlatIndex only supports an interface returning int indices
DeviceTensor<int, 2, true> outIntIndices(
resources_->getMemoryManagerCurrentDevice(),
{(int) n, (int) k}, stream);
bool usePaged = false;
if (getDeviceForAddress(x) == -1) {
// It is possible that the user is querying for a vector set size
// `x` that won't fit on the GPU.
// In this case, we will have to handle paging of the data from CPU
// -> GPU.
// Currently, we don't handle the case where the output data won't
// fit on the GPU (e.g., n * k is too large for the GPU memory).
size_t dataSize = (size_t) n * this->d * sizeof(float);
if (dataSize >= minPagedSize_) {
searchFromCpuPaged_(n, x, k,
outDistances.data(),
outIntIndices.data());
usePaged = true;
}
}
if (!usePaged) {
searchNonPaged_(n, x, k,
outDistances.data(),
outIntIndices.data());
}
// Convert and copy int indices out
auto outIndices = toDevice<faiss::Index::idx_t, 2>(resources_,
device_,
labels,
stream,
{(int) n, (int) k});
// Convert int to long
thrust::transform(thrust::cuda::par.on(stream),
outIntIndices.data(),
outIntIndices.end(),
outIndices.data(),
IntToLong());
// Copy back if necessary
fromDevice<float, 2>(outDistances, distances, stream);
fromDevice<faiss::Index::idx_t, 2>(outIndices, labels, stream);
}
void
GpuIndexFlat::searchImpl_(faiss::Index::idx_t n,
const float* x,
faiss::Index::idx_t k,
float* distances,
faiss::Index::idx_t* labels) const {
FAISS_ASSERT_MSG(false, "Should not be called");
}
void
GpuIndexFlat::searchNonPaged_(int n,
const float* x,
int k,
float* outDistancesData,
int* outIndicesData) const {
Tensor<float, 2, true> outDistances(outDistancesData, {n, k});
Tensor<int, 2, true> outIndices(outIndicesData, {n, k});
auto stream = resources_->getDefaultStream(device_);
// Make sure arguments are on the device we desire; use temporary
// memory allocations to move it if necessary
auto vecs = toDevice<float, 2>(resources_,
device_,
const_cast<float*>(x),
stream,
{n, (int) this->d});
data_->query(vecs, k, outDistances, outIndices, true);
}
void
GpuIndexFlat::searchFromCpuPaged_(int n,
const float* x,
int k,
float* outDistancesData,
int* outIndicesData) const {
Tensor<float, 2, true> outDistances(outDistancesData, {n, k});
Tensor<int, 2, true> outIndices(outIndicesData, {n, k});
// Is pinned memory available?
auto pinnedAlloc = resources_->getPinnedMemory();
int pageSizeInVecs =
(int) ((pinnedAlloc.second / 2) / (sizeof(float) * this->d));
if (!pinnedAlloc.first || pageSizeInVecs < 1) {
// Just page without overlapping copy with compute
int batchSize = utils::nextHighestPowerOf2(
(int) ((size_t) kNonPinnedPageSize /
(sizeof(float) * this->d)));
for (int cur = 0; cur < n; cur += batchSize) {
int num = std::min(batchSize, n - cur);
auto outDistancesSlice = outDistances.narrowOutermost(cur, num);
auto outIndicesSlice = outIndices.narrowOutermost(cur, num);
searchNonPaged_(num,
x + (size_t) cur * this->d,
k,
outDistancesSlice.data(),
outIndicesSlice.data());
}
return;
}
//
// Pinned memory is available, so we can overlap copy with compute.
// We use two pinned memory buffers, and triple-buffer the
// procedure:
//
// 1 CPU copy -> pinned
// 2 pinned copy -> GPU
// 3 GPU compute
//
// 1 2 3 1 2 3 ... (pinned buf A)
// 1 2 3 1 2 ... (pinned buf B)
// 1 2 3 1 ... (pinned buf A)
// time ->
//
auto defaultStream = resources_->getDefaultStream(device_);
auto copyStream = resources_->getAsyncCopyStream(device_);
FAISS_ASSERT((size_t) pageSizeInVecs * this->d <=
(size_t) std::numeric_limits<int>::max());
float* bufPinnedA = (float*) pinnedAlloc.first;
float* bufPinnedB = bufPinnedA + (size_t) pageSizeInVecs * this->d;
float* bufPinned[2] = {bufPinnedA, bufPinnedB};
// Reserve space on the GPU for the destination of the pinned buffer
// copy
DeviceTensor<float, 2, true> bufGpuA(
resources_->getMemoryManagerCurrentDevice(),
{(int) pageSizeInVecs, (int) this->d},
defaultStream);
DeviceTensor<float, 2, true> bufGpuB(
resources_->getMemoryManagerCurrentDevice(),
{(int) pageSizeInVecs, (int) this->d},
defaultStream);
DeviceTensor<float, 2, true>* bufGpus[2] = {&bufGpuA, &bufGpuB};
// Copy completion events for the pinned buffers
std::unique_ptr<CudaEvent> eventPinnedCopyDone[2];
// Execute completion events for the GPU buffers
std::unique_ptr<CudaEvent> eventGpuExecuteDone[2];
// All offsets are in terms of number of vectors; they remain within
// int bounds (as this function only handles max in vectors)
// Current start offset for buffer 1
int cur1 = 0;
int cur1BufIndex = 0;
// Current start offset for buffer 2
int cur2 = -1;
int cur2BufIndex = 0;
// Current start offset for buffer 3
int cur3 = -1;
int cur3BufIndex = 0;
while (cur3 < n) {
// Start async pinned -> GPU copy first (buf 2)
if (cur2 != -1 && cur2 < n) {
// Copy pinned to GPU
int numToCopy = std::min(pageSizeInVecs, n - cur2);
// Make sure any previous execution has completed before continuing
auto& eventPrev = eventGpuExecuteDone[cur2BufIndex];
if (eventPrev.get()) {
eventPrev->streamWaitOnEvent(copyStream);
}
CUDA_VERIFY(cudaMemcpyAsync(bufGpus[cur2BufIndex]->data(),
bufPinned[cur2BufIndex],
(size_t) numToCopy * this->d * sizeof(float),
cudaMemcpyHostToDevice,
copyStream));
// Mark a completion event in this stream
eventPinnedCopyDone[cur2BufIndex] =
std::move(std::unique_ptr<CudaEvent>(new CudaEvent(copyStream)));
// We pick up from here
cur3 = cur2;
cur2 += numToCopy;
cur2BufIndex = (cur2BufIndex == 0) ? 1 : 0;
}
if (cur3 != -1 && cur3 < n) {
// Process on GPU
int numToProcess = std::min(pageSizeInVecs, n - cur3);
// Make sure the previous copy has completed before continuing
auto& eventPrev = eventPinnedCopyDone[cur3BufIndex];
FAISS_ASSERT(eventPrev.get());
eventPrev->streamWaitOnEvent(defaultStream);
// Create tensor wrappers
DeviceTensor<float, 2, true> input(bufGpus[cur3BufIndex]->data(),
{numToProcess, this->d});
auto outDistancesSlice = outDistances.narrowOutermost(cur3, numToProcess);
auto outIndicesSlice = outIndices.narrowOutermost(cur3, numToProcess);
data_->query(input, k,
outDistancesSlice,
outIndicesSlice, true);
// Create completion event
eventGpuExecuteDone[cur3BufIndex] =
std::move(std::unique_ptr<CudaEvent>(new CudaEvent(defaultStream)));
// We pick up from here
cur3BufIndex = (cur3BufIndex == 0) ? 1 : 0;
cur3 += numToProcess;
}
if (cur1 < n) {
// Copy CPU mem to CPU pinned
int numToCopy = std::min(pageSizeInVecs, n - cur1);
// Make sure any previous copy has completed before continuing
auto& eventPrev = eventPinnedCopyDone[cur1BufIndex];
if (eventPrev.get()) {
eventPrev->cpuWaitOnEvent();
}
memcpy(bufPinned[cur1BufIndex],
x + (size_t) cur1 * this->d,
(size_t) numToCopy * this->d * sizeof(float));
// We pick up from here
cur2 = cur1;
cur1 += numToCopy;
cur1BufIndex = (cur1BufIndex == 0) ? 1 : 0;
}
}
}
void
GpuIndexFlat::reconstruct(faiss::Index::idx_t key,
float* out) const {
DeviceScope scope(device_);
FAISS_THROW_IF_NOT_MSG(key < this->ntotal, "index out of bounds");
auto stream = resources_->getDefaultStream(device_);
if (config_.useFloat16) {
auto vec = data_->getVectorsFloat32Copy(key, 1, stream);
fromDevice(vec.data(), out, this->d, stream);
} else {
auto vec = data_->getVectorsFloat32Ref()[key];
fromDevice(vec.data(), out, this->d, stream);
}
}
void
GpuIndexFlat::reconstruct_n(faiss::Index::idx_t i0,
faiss::Index::idx_t num,
float* out) const {
DeviceScope scope(device_);
FAISS_THROW_IF_NOT_MSG(i0 < this->ntotal, "index out of bounds");
FAISS_THROW_IF_NOT_MSG(i0 + num - 1 < this->ntotal, "num out of bounds");
auto stream = resources_->getDefaultStream(device_);
if (config_.useFloat16) {
auto vec = data_->getVectorsFloat32Copy(i0, num, stream);
fromDevice(vec.data(), out, num * this->d, stream);
} else {
auto vec = data_->getVectorsFloat32Ref()[i0];
fromDevice(vec.data(), out, this->d * num, stream);
}
}
void
GpuIndexFlat::verifySettings_() const {
// If we want Hgemm, ensure that it is supported on this device
if (config_.useFloat16Accumulator) {
#ifdef FAISS_USE_FLOAT16
FAISS_THROW_IF_NOT_MSG(config_.useFloat16,
"useFloat16Accumulator can only be enabled "
"with useFloat16");
FAISS_THROW_IF_NOT_FMT(getDeviceSupportsFloat16Math(config_.device),
"Device %d does not support Hgemm "
"(useFloat16Accumulator)",
config_.device);
#else
FAISS_THROW_IF_NOT_MSG(false, "not compiled with float16 support");
#endif
}
}
//
// GpuIndexFlatL2
//
GpuIndexFlatL2::GpuIndexFlatL2(GpuResources* resources,
faiss::IndexFlatL2* index,
GpuIndexFlatConfig config) :
GpuIndexFlat(resources, index, config) {
}
GpuIndexFlatL2::GpuIndexFlatL2(GpuResources* resources,
int dims,
GpuIndexFlatConfig config) :
GpuIndexFlat(resources, dims, faiss::METRIC_L2, config) {
}
void
GpuIndexFlatL2::copyFrom(faiss::IndexFlatL2* index) {
GpuIndexFlat::copyFrom(index);
}
void
GpuIndexFlatL2::copyTo(faiss::IndexFlatL2* index) {
GpuIndexFlat::copyTo(index);
}
//
// GpuIndexFlatIP
//
GpuIndexFlatIP::GpuIndexFlatIP(GpuResources* resources,
faiss::IndexFlatIP* index,
GpuIndexFlatConfig config) :
GpuIndexFlat(resources, index, config) {
}
GpuIndexFlatIP::GpuIndexFlatIP(GpuResources* resources,
int dims,
GpuIndexFlatConfig config) :
GpuIndexFlat(resources, dims, faiss::METRIC_INNER_PRODUCT, config) {
}
void
GpuIndexFlatIP::copyFrom(faiss::IndexFlatIP* index) {
GpuIndexFlat::copyFrom(index);
}
void
GpuIndexFlatIP::copyTo(faiss::IndexFlatIP* index) {
GpuIndexFlat::copyTo(index);
}
} } // namespace