-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
296 lines (253 loc) · 14.1 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import argparse
import copy
import os
import random
import shutil
import torch
from torch.utils.data import Subset
import client_FL
import utils
from client import train_client_models, sample_clients_id
from utils import get_dataset, evaluate_model, print_and_log
import numpy as np
import warnings
from functools import partial
from collections import defaultdict
import custom_model
warnings.filterwarnings('ignore')
def aggregate_models(args, list_clients_id, from_global_epoch=0, list_model_states=None):
"""
iteratively adds the scaled clients' updates to the aggregate model.
stores the current aggregate state
@param args:
@param list_clients_id: list of clients' id's that are selected to submit their updates
this run
@param device: cpu or cuda
@return: the aggregate model that contains the updated aggregate state
"""
with torch.no_grad():
# args.client_data_split_ratio = args.batch_size
aggregate_weight = copy.deepcopy(args.architecture().state_dict())
list_models = {}
for id in list_clients_id:
list_models[id] = copy.deepcopy(list_model_states[id].net.state_dict())
print(f"aggregating model weights ratios: {args.client_data_split_ratio}")
for key in aggregate_weight.keys():
weights = []
weights_ratio = []
for id in list_clients_id:
weights.append(list_models[id][key] * args.client_data_split_ratio[id])
weights_ratio.append(args.client_data_split_ratio[id])
aggregate_weight[key] = sum(weights) / sum(weights_ratio)
aggregate_model = args.architecture().to(args.device)
aggregate_model.load_state_dict(aggregate_weight)
return aggregate_model, aggregate_weight
def train_fl_model(args):
"""
iteratively trains and stores the aggregate model.
@param args:
@return: None
"""
testdata = get_dataset(args, train=False, dataset_id='all', get_list=False)
testloader = torch.utils.data.DataLoader(testdata, batch_size=args.eval_batch_size, num_workers=args.num_workers,
pin_memory=True, shuffle=False)
aggregate_model = args.architecture()
utils.load_pretrained_state(aggregate_model, args)
aggregate_state = copy.deepcopy(aggregate_model.state_dict())
sequence_dict_all = defaultdict(list)
sync_freq = {}
for i in range(args.num_global_server_epoch):
for j in range(args.num_clients):
sequence = utils.get_or_load_sequence(args.batch_size[j], int(args.list_dataset_length[j]),
args.num_local_client_epoch,
drop_last=True if args.dp_option == "dpsgd" else False)
num_batches_to_aggregate = int(np.ceil(len(sequence) / args.num_aggregates_per_global_epoch))
if args.set_batch_dynamically:
num_batches_to_aggregate = int(np.round(len(sequence) / args.num_aggregates_per_global_epoch))
sync_freq[j] = num_batches_to_aggregate
if len(sequence) < args.num_aggregates_per_global_epoch:
raise ValueError(f"{args.num_aggregates_per_global_epoch} provided is larger than "
f"num of batches per epoch"
f"for client {j}")
for k in range(args.num_aggregates_per_global_epoch):
sequence_dict_all[j].append(sequence[k * num_batches_to_aggregate:
(k + 1) * num_batches_to_aggregate])
all_clients = {}
for client_id in range(args.num_clients):
sequence_dict_all[client_id] = iter(sequence_dict_all[client_id])
all_clients[client_id] = client_FL.Client(client_id, args)
# if we want to the server to aggregate multiple times per epoch,
# set args.num_aggregates_per_global_epoch > 1. if args.num_aggregates_per_global_epoch = 1,
# args.num_global_aggregate_steps = args.num_global_server_epoch
args.num_global_aggregate_steps = args.num_global_server_epoch * args.num_aggregates_per_global_epoch
print(f"total number of aggregates: {args.num_global_aggregate_steps}")
for i in range(args.num_global_aggregate_steps):
torch.cuda.empty_cache()
list_clients_id = sample_clients_id(args)
list_clients_id_copy = copy.deepcopy(list_clients_id)
sequence_dict = {}
print_and_log(args, f"list of clients sampled for this round: {list_clients_id}", 1)
for id in list_clients_id_copy:
try:
sequence_dict[id] = next(sequence_dict_all[id])
except StopIteration:
print_and_log(args, f"client {id} has used up but selected: {list_clients_id}. will be removed", 1)
list_clients_id_copy.remove(id)
if args.dp_option == 'dpsgd':
for id in list_clients_id:
try:
all_clients[id].optimizer.privacy_engine.steps += 1
next_epsilon, best_alpha = all_clients[id].optimizer.privacy_engine.get_privacy_spent()
all_clients[id].optimizer.privacy_engine.steps -= 1
if next_epsilon >= args.target_budget:
print_and_log(args, f"client {id} will use up its budget {next_epsilon} if train for another step"
f"(target {args.target_budget}) "
f"but selected: {list_clients_id}",
1)
list_clients_id_copy.remove(id)
except FileNotFoundError:
print_and_log(args, f"client {id} has no saved state", 1)
if len(list_clients_id_copy) == 0:
args.num_global_aggregate_steps = i
print_and_log(args, f"no more client's data left for training {args.num_global_aggregate_steps}", 1)
break
print_and_log(args, f"start training global step: {i+1}", 1)
train_client_models(args, list_clients_id_copy, from_global_epoch=i,
all_clients=all_clients, sequence_dict=sequence_dict)
aggregate_model, aggregate_state = aggregate_models(args, list_clients_id_copy, from_global_epoch=i,
list_model_states=all_clients)
for client_id in range(args.num_clients):
all_clients[client_id].load_aggregate_state(aggregate_state)
if (i+1)%args.save_freq_epoch == 0:
torch.save({'net': aggregate_state},
f"{args.save_dir}/aggregate_{args.num_global_aggregate_steps}.pt")
torch.save({'net': aggregate_state},
f"{args.save_dir}/aggregate_{args.num_global_aggregate_steps}.pt")
eps_list, best_alpha_list, delta_list = [], [], []
for j in range(len(all_clients)):
eps, best_alpha, delta = None, None, None
if args.dp_option == 'dpsgd':
state = all_clients[j].save()
eps, best_alpha = state['eps'], state['best_alpha']
try:
delta = state['delta']
except:
delta = None
eps_list.append(eps)
best_alpha_list.append(best_alpha)
delta_list.append(delta)
all_y_pred, all_y_val = evaluate_model(args.dataset, aggregate_model, testloader)
utils.print_save_epoch_results(args, args.num_global_aggregate_steps-1, None, None, None, None, all_y_val, all_y_pred,
name="all", epsilon=eps_list, best_alpha={"best_alpha": best_alpha_list,
"delta": delta_list})
if args.use_keep:
mia_testloader = utils.get_mia_testloader(args)
utils.save_mia_scores(aggregate_model, args, args.num_global_aggregate_steps, mia_testloader)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--initial_model_state', type=str, default="",
help='path to the initial state for transfer learning')
parser.add_argument('--num_workers', type=int, default=0)
# FL parameters
parser.add_argument('--num_global_server_epoch', type=int, default=2,
help='number of epochs the aggregate model get updated')
parser.add_argument('--num_aggregates_per_global_epoch', type=int, default=1,
help='number of aggregation performed for each global epoch')
parser.add_argument('--num_local_client_epoch', type=int, default=1,
help='number of epochs the client model gets updated each ')
parser.add_argument('--sample_clients_ratio', type=float, default=1.0,
help='the fraction of clients to update their updates during '
'each aggregation round')
parser.add_argument('--batch_size', type=int, nargs='+', default=[128])
parser.add_argument('--eval_batch_size', type=int, default=128)
parser.add_argument('--seed', type=int, default=2021)
parser.add_argument('--lr', type=float, nargs='+', default=[0.15])
parser.add_argument('--weight_decay', type=float, nargs="+", default=[0.0002])
parser.add_argument('--optimizer', type=str, nargs="+", default=['sgd'])
parser.add_argument('--dec_lr', type=int, nargs='+', default=None, help="[30, 60, 90]")
parser.add_argument('--gamma', type=float, default=0.2)
parser.add_argument('--save_freq_epoch', type=int, default=1)
# DP params
parser.add_argument('--dp_option', type=str, default="None",
help='dpsgd for PriMIA, None for regular FL')
parser.add_argument('--noise_multiplier', type=float, default=1.0,
help='ratio of Gaussian noise to add for DPSGD or bound-client training')
parser.add_argument("--max_grad_norm", type=float, default=1.0,
help="the clipping norm for Gaussian Mechanism for differential privacy"
"for DPSGD or bound-client. If median_clipping_norm is true and "
"and dp-option=bound-client, then it would be set dynamically "
"after each ")
parser.add_argument('--delta', type=float, default=1e-5,
help='value of delta for DP (1/num-clients ^ 1.1)')
parser.add_argument('--target_budget', type=float, default=6.0,
help='the target privacy budget')
parser.add_argument('--freeze_running_stats', type=int, default=0)
# Dataset
parser.add_argument('--dataset', type=str, help="pancreas,"
"xray", default="pancreas")
parser.add_argument('--clients_to_include', type=str, default='xin_5', help='',)
parser.add_argument('--use_keep', type=int, default=0)
# Pancreas dataset
parser.add_argument('--log_transform', type=int, default=1)
# Xray dataset params
parser.add_argument('--replace_bn_layer', type=int, default=0)
parser.add_argument('--use_instance_norm', type=int, default=0)
parser.add_argument('--group_norm_features', type=int, default=16)
parser.add_argument('--drop_rate', type=float, default=0.25)
parser.add_argument('--xray_img_size', type=int, default=224)
parser.add_argument('--unique_patients', type=int, default=0)
parser.add_argument('--xray_views', type=str, default='AP-PA')
parser.add_argument('--only_include', type=str, nargs="+",
default=['Atelectasis', 'Effusion', 'Cardiomegaly', 'No Finding'])
parser.add_argument('--data_aug_rot', type=int, default=15, help='')
parser.add_argument('--data_aug_trans', type=float, default=0.05, help='')
parser.add_argument('--data_aug_scale', type=float, default=0.15, help='')
# architecture
parser.add_argument('--architecture', type=str, help="mnistNet, TwoNet, GEMINIModel, resnet18, etc.",
default="GEMINIModel")
# exp save name
parser.add_argument('--exp_name', type=str, default='trial')
parser.add_argument('--exp_id', type=str, default='0')
# Kfold cross validation
parser.add_argument('--kfold', type=int, default=5,
help='kfold cv')
# dataset path
parser.add_argument('--dataset_path', type=str, default='dataset/Pancreas',
help="path to your dataset")
parser.add_argument('--split_info_path', type=str, default='',
help="where to store the data split info")
parser.add_argument('--device', type=str, default='gpu')
parser.add_argument('--verbose', type=int, default=0)
parser.add_argument('--rewrite', type=int, default=0)
args = parser.parse_args()
args.type_exp = 'FL'
args.save_dir = utils.get_global_save_dir(args)
if args.rewrite:
print(f"rewrite dir {args.save_dir}")
shutil.rmtree(args.save_dir)
os.makedirs(args.save_dir)
if not os.path.exists(args.split_info_path):
args.split_info_path = f'split_info_path/{args.dataset}'
if not os.path.exists(args.split_info_path):
os.makedirs(args.split_info_path)
architecture = eval(f"custom_model.{args.architecture}")
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if 'xray' in args.dataset:
args.architecture = partial(architecture, 1, len(args.only_include),
freeze_bn_layer=args.freeze_running_stats,
replace_bn_layer=args.replace_bn_layer,
groups=args.group_norm_features,
use_instance=args.use_instance_norm,
drop_rate=args.drop_rate,) # for logistic regression
else:
args.architecture = architecture
if args.device != 'cpu':
args.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
utils.set_args_fl(args)
args.logger = utils.get_log(args)
args.logger.info(vars(args))
train_fl_model(args)