This repository contains examples for using ClearML with the Nvidia TLT framework.
- Train
- Evaluate
- Prune
See Run the examples. The example for NVidia TLT is located in the Nvidia TLT example
project.
See Set up a ClearML account and Install ClearML Agent to set up your environment in case you don't have a locally-installed ClearML Server.
python train_tlt.py --module detectnet_v2 -m nvidia/tlt_pretrained_detectnet_v2:resnet18 \
--arch detectnet_v2 --dataset-task <YOUR DATASET TASK ID> \
--dataset-export-spec example_specs/dataset_export_spec.txt -c specs/ \
--key <Your key> --model_name model --experiment_spec_file specs/detectnet_v2_spec_file_template.txt
python evaluate_tlt.py --arch detectnet_v2 --dataset-export-spec example_specs/dataset_export_spec.txt \
--dataset-task <YOUR DATASET TASK ID> \
--experiment_spec_file example_specs/detectnet_v2_eval_kitti.txt \
--key <YOUR KEY> --train-task <YOUR TRAINING TASK ID>
python prune_tlt.py --arch detectnet_v2 --trains-model-task <YOUR TRAIN TASK ID> --output_file \
/home/detectnet_v2/resnet18_nopool_bn_detectnet_v2_pruned.tlt --key <Your key>
When running each experiment, a new task will appear in the ClearML UI.