-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdifftpt_utils.py
152 lines (114 loc) · 8 KB
/
difftpt_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import torch
import numpy as np
from PIL import Image
from torch.utils.data import Dataset
import torchvision.transforms as transforms
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
# from data.imagenet_variants import thousand_k_to_200, imagenet_a_mask, imagenet_r_mask, imagenet_v_mask, imagenet_r_fold
imagenet_r_fold = ['n01443537', 'n01484850', 'n01494475', 'n01498041', 'n01514859', 'n01518878', 'n01531178', 'n01534433', 'n01614925', 'n01616318', 'n01630670', 'n01632777', 'n01644373', 'n01677366', 'n01694178', 'n01748264', 'n01770393', 'n01774750', 'n01784675', 'n01806143', 'n01820546', 'n01833805', 'n01843383', 'n01847000', 'n01855672', 'n01860187', 'n01882714', 'n01910747', 'n01944390', 'n01983481', 'n01986214', 'n02007558', 'n02009912', 'n02051845', 'n02056570', 'n02066245', 'n02071294', 'n02077923', 'n02085620', 'n02086240', 'n02088094', 'n02088238', 'n02088364', 'n02088466', 'n02091032', 'n02091134', 'n02092339', 'n02094433', 'n02096585', 'n02097298', 'n02098286', 'n02099601', 'n02099712', 'n02102318', 'n02106030', 'n02106166', 'n02106550', 'n02106662', 'n02108089', 'n02108915', 'n02109525', 'n02110185', 'n02110341', 'n02110958', 'n02112018', 'n02112137', 'n02113023', 'n02113624', 'n02113799', 'n02114367', 'n02117135', 'n02119022', 'n02123045', 'n02128385', 'n02128757', 'n02129165', 'n02129604', 'n02130308', 'n02134084', 'n02138441', 'n02165456', 'n02190166', 'n02206856', 'n02219486', 'n02226429', 'n02233338', 'n02236044', 'n02268443', 'n02279972', 'n02317335', 'n02325366', 'n02346627', 'n02356798', 'n02363005', 'n02364673', 'n02391049', 'n02395406', 'n02398521', 'n02410509', 'n02423022', 'n02437616', 'n02445715', 'n02447366', 'n02480495', 'n02480855', 'n02481823', 'n02483362', 'n02486410', 'n02510455', 'n02526121', 'n02607072', 'n02655020', 'n02672831', 'n02701002', 'n02749479', 'n02769748', 'n02793495', 'n02797295', 'n02802426', 'n02808440', 'n02814860', 'n02823750', 'n02841315', 'n02843684', 'n02883205', 'n02906734', 'n02909870', 'n02939185', 'n02948072', 'n02950826', 'n02951358', 'n02966193', 'n02980441', 'n02992529', 'n03124170', 'n03272010', 'n03345487', 'n03372029', 'n03424325', 'n03452741', 'n03467068', 'n03481172', 'n03494278', 'n03495258', 'n03498962', 'n03594945', 'n03602883', 'n03630383', 'n03649909', 'n03676483', 'n03710193', 'n03773504', 'n03775071', 'n03888257', 'n03930630', 'n03947888', 'n04086273', 'n04118538', 'n04133789', 'n04141076', 'n04146614', 'n04147183', 'n04192698', 'n04254680', 'n04266014', 'n04275548', 'n04310018', 'n04325704', 'n04347754', 'n04389033', 'n04409515', 'n04465501', 'n04487394', 'n04522168', 'n04536866', 'n04552348', 'n04591713', 'n07614500', 'n07693725', 'n07695742', 'n07697313', 'n07697537', 'n07714571', 'n07714990', 'n07718472', 'n07720875', 'n07734744', 'n07742313', 'n07745940', 'n07749582', 'n07753275', 'n07753592', 'n07768694', 'n07873807', 'n07880968', 'n07920052', 'n09472597', 'n09835506', 'n10565667', 'n12267677']
class diffuData(Dataset):
def __init__(self, data_root, img_list, label_list, trainsform, augmode='difftpt', diffu_ratio=0.5, view_num=63):
self.data_root = data_root
self.img_list = img_list
self.label_list = label_list
self.trainsform = trainsform
self.augmode = augmode
self.diffu_ratio = diffu_ratio
self.view_num = view_num
def __getitem__(self, item):
if self.augmode == 'tpt':
img = Image.open(self.img_list[item]).convert('RGB')
imgs = self.trainsform[0](img)
# return imgs, self.label_list[item], self.img_list[item]
return imgs, self.label_list[item]
elif self.augmode == 'difftpt':
# diffu 64 + aug 64
img = Image.open(self.img_list[item]).convert('RGB')
imgs = self.trainsform[0](img) # imgs[ori,augx63]
diffu_img = [] # 63 diffu imgs
for i in range(self.view_num):
data_name = ((self.img_list[item]).split('/'))[-1]
data_fold = ((self.img_list[item]).split('/'))[-2]
img_i = Image.open(os.path.join(self.data_root, data_fold, data_name[:-4]+'_'+str(i)+data_name[-4:])).convert('RGB')
img_i = self.trainsform[1](img_i)
diffu_img.append(img_i)
# return imgs+diffu_img, self.label_list[item], self.img_list[item]
return imgs+diffu_img, self.label_list[item]
# [ori, tpt, diffu]
else:
print('self.augmode error! tpt or difftpt')
exit()
def __len__(self):
return len(self.img_list)
def get_data_loader(data_transform, args=None):
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
data_transform_diffu = transforms.Compose([
transforms.Resize(args.resolution, interpolation=BICUBIC),
transforms.CenterCrop(args.resolution),
transforms.ToTensor(),
normalize,
])
img_list = []
label_list = []
with open(os.path.join(args.diff_root, 'selected_data_list.txt'), 'r') as f:
for line in f.readlines():
read_img = line.strip()
img_list.append(read_img)
label_list.append(imagenet_r_fold.index(read_img.split('/')[-2]))
tpt_dataset = diffuData(data_root=args.diff_root, img_list=img_list, label_list=label_list, \
trainsform=[data_transform, data_transform_diffu], augmode=args.aug_mode, view_num=args.batch_size-1)
return tpt_dataset
def avg_entropy(outputs):
logits = outputs - outputs.logsumexp(dim=-1, keepdim=True) # logits = outputs.log_softmax(dim=1) [N, 1000]
avg_logits = logits.logsumexp(dim=0) - np.log(logits.shape[0]) # avg_logits = logits.mean(0) [1, 1000]
min_real = torch.finfo(avg_logits.dtype).min
avg_logits = torch.clamp(avg_logits, min=min_real)
return -(avg_logits * torch.exp(avg_logits)).sum(dim=-1)
def select_confident_samples_cosine(logits, selection_cosine, selection_selfentro):
cosine_distan = [torch.nn.CosineSimilarity(dim=0)(logits[0], logits[i]) for i in range(1, logits.shape[0])]
cosine_distan = torch.stack(cosine_distan)
idx_cosine = torch.argsort(cosine_distan, descending=True)[:int(cosine_distan.size()[0] * selection_cosine)]
# idx
for i in range(idx_cosine.shape[0]):
idx_cosine[i] +=1
logits_cos = logits[idx_cosine]
logits = torch.cat((logits[0, :].unsqueeze(0), logits_cos), dim=0)
batch_entropy = -(logits.softmax(1) * logits.log_softmax(1)).sum(1)
idx = torch.argsort(batch_entropy, descending=False)[:int(batch_entropy.size()[0] * selection_selfentro)]
return logits[idx], [idx_cosine, idx], cosine_distan
def test_time_tuning_difftpt(model, inputs, optimizer, scaler, args):
if args.cocoop:
image_feature, pgen_ctx = inputs
pgen_ctx.requires_grad = True
optimizer = torch.optim.AdamW([pgen_ctx], args.lr)
selected_idx = None
batch_entropy = None
logit_out = None
for j in range(args.tta_steps):
with torch.cuda.amp.autocast():
if args.cocoop:
output = model((image_feature, pgen_ctx))
else:
output = model(inputs)
if selected_idx is not None:
logits_cos = output[selected_idx[0]]
logits = torch.cat((output[0, :].unsqueeze(0), logits_cos), dim=0)
output = logits[selected_idx[1]]
else:
output, selected_idx, batch_entropy = select_confident_samples_cosine(output, args.selection_cosine, args.selection_selfentro)
loss = avg_entropy(output)
optimizer.zero_grad()
# compute gradient and do SGD step
scaler.scale(loss).backward()
# Unscales the gradients of optimizer's assigned params in-place
scaler.step(optimizer)
scaler.update()
if args.cocoop:
return pgen_ctx
return