-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.Rmd
84 lines (63 loc) · 3.04 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# Semi-Modular Inference
<!-- badges: start -->
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://cran.r-project.org/web/licenses/MIT)
[![devel-version](https://img.shields.io/badge/devel%20version-0.2.0-blue.svg)](https://github.com/christianu7/aistats2020smi)
[![arXiv](https://img.shields.io/badge/arXiv-2003.06804-b31b1b.svg)](https://arxiv.org/abs/2003.06804)
<!-- badges: end -->
This repo contains code for our AISTATS article on __Semi-Modular Inference__.
Semi-Modular Inference (SMI) is a modification of Bayesian inference in multi-modular settings, which enables tunable and directed flow of information between modules.
For an introduction to SMI, we invite you to watch our [slideslive presentation](https://slideslive.com/38930337) (best on 1.5x),
[<img src="inst/figures/slideslive_smi.png" width="70%" style="display: block; margin: auto;" />](https://slideslive.com/38930337)
## Citation
If you find Semi-Modular Inference relevant for your scientific publication, we encourage you to add the following reference:
```bibtex
@InProceedings{Carmona2020smi,
title = {Semi-Modular Inference: enhanced learning in multi-modular models by tempering the influence of components},
author = {Carmona, Chris U. and Nicholls, Geoff K.},
booktitle = {Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020},
year = {2020},
editor = {Silvia Chiappa and Roberto Calandra},
volume = {108},
pages = {4226--4235},
series = {Proceedings of Machine Learning Research},
month = {26--28 Aug},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v108/carmona20a/carmona20a.pdf},
url = {http://proceedings.mlr.press/v108/carmona20a.html},
arxivId = {2003.06804},
}
```
## Installation
You can install the devel version of aistats2020smi from our github repository
``` r
#install.packages("devtools")
devtools::install_github("christianu7/aistats2020smi")
```
## Reproducibility
The main article and supplementary material can be reproduced entirely using a `.Rnw` file included in this repo. Executing the following command will generate a pdf file in your current directory:
```r
print( getwd() )
aistats2020smi::generate_article( out_dir=getwd() )
```
If you prefer to keep and analyse intermediate outputs, consider executing the following commands:
```r
path = "~/smi_article"
dir.create(path)
aistats2020smi::download_mcmc_results( mcmc_dir = path )
aistats2020smi::generate_article( out_dir = path, mcmc_dir = path )
```
## Coming soon, Variational SMI
You may also be interested in our current work on Scalable Semi-Modular Inference via Normalizing flows. Here is a teaser of our current work
[<img src="inst/figures/youtube_vsmi.png" width="60%" style="display: block; margin: auto;" />](https://www.youtube.com/watch?v=EmpoUiLqk2o)