-
Notifications
You must be signed in to change notification settings - Fork 310
/
Copy pathcombinatorics.py
59 lines (39 loc) · 1.63 KB
/
combinatorics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import math
import operator as op
from functools import reduce
def memoize(f):
"""memoization decorator for a function taking one or more arguments"""
class memodict(dict):
def __getitem__(self, *key):
return dict.__getitem__(self, key)
def __missing__(self, key):
ret = self[key] = f(*key)
return ret
return memodict().__getitem__
@memoize
def catalan_recursive(n):
return 1 if n == 0 else (2 * (2 * n - 1) * catalan_recursive(n - 1)) // (n + 1)
@memoize
def euler_recursive(n, k):
if (k == 0) or (n - 1 == k):
return 1
return (n - k) * euler_recursive(n - 1, k - 1) + (k + 1) * euler_recursive(n - 1, k)
@memoize
def stirling_1_recursive(n, k):
if n == k == 0:
return 1
if (n == 0) or (k == 0):
return 0
return stirling_1_recursive(n - 1, k - 1) + (n - 1) * stirling_1_recursive(n - 1, k)
@memoize
def stirling_2_recursive(n, k):
if (k == 1) or (n == k):
return 1
return stirling_2_recursive(n - 1, k - 1) + k * stirling_2_recursive(n - 1, k)
nCr = lambda n, r: reduce(op.mul, range(n - r + 1, n + 1), 1) // math.factorial(r)
multinomial = lambda k: math.factorial(sum(k)) // reduce(op.mul, (math.factorial(i) for i in k))
derangements = lambda n: int(math.factorial(n) / math.e + 0.5)
bell = lambda n: sum(stirling_2_recursive(k, n) for k in range(n + 1))
catalan = lambda n: nCr(2 * n, n) // (n + 1)
euler = lambda n, k: sum((1 - 2 * (j & 1)) * nCr(n + 1, j) * ((k + 1 - j)**n) for j in range(k + 1))
stirling_2 = lambda n, k: sum(((-1)**(k - j)) * nCr(k, j) * (j**n) for j in range(k + 1)) // math.factorial(k)