-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutil.py
267 lines (219 loc) · 8.79 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for Grappler autoparallel optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from functools import partial
import tensorflow as tf
from tensorflow.core.framework import variable_pb2
from tensorflow.core.protobuf import rewriter_config_pb2
from tensorflow.contrib.tensorboard.plugins import projector
FLAGS = tf.flags.FLAGS
eps_micro = 1e-15 # tf.float32 sensible.
eps_tiny = 1e-10 # tf.float32 sensible.
eps_small = 3e-8 # tf.float16 sensible.
def export_state_tuples(state_tuples, name):
for state_tuple in state_tuples:
tf.add_to_collection(name, state_tuple.c)
tf.add_to_collection(name, state_tuple.h)
def import_state_tuples(state_tuples, name, num_replicas):
restored = []
for i in range(len(state_tuples) * num_replicas):
c = tf.get_collection_ref(name)[2 * i + 0]
h = tf.get_collection_ref(name)[2 * i + 1]
restored.append(tf.contrib.rnn.LSTMStateTuple(c, h))
return tuple(restored)
def with_prefix(prefix, name):
"""Adds prefix to name."""
return "/".join((prefix, name))
def with_autoparallel_prefix(replica_id, name):
return with_prefix("AutoParallel-Replica-%d" % replica_id, name)
class UpdateCollection(object):
"""Update collection info in MetaGraphDef for AutoParallel optimizer."""
def __init__(self, metagraph, model):
self._metagraph = metagraph
self.replicate_states(model.initial_state_name)
self.replicate_states(model.final_state_name)
self.update_snapshot_name("variables")
self.update_snapshot_name("trainable_variables")
def update_snapshot_name(self, var_coll_name):
var_list = self._metagraph.collection_def[var_coll_name]
for i, value in enumerate(var_list.bytes_list.value):
var_def = variable_pb2.VariableDef()
var_def.ParseFromString(value)
# Somehow node Model/global_step/read doesn't have any fanout and seems to
# be only used for snapshot; this is different from all other variables.
if var_def.snapshot_name != "Model/global_step/read:0":
var_def.snapshot_name = with_autoparallel_prefix(
0, var_def.snapshot_name)
value = var_def.SerializeToString()
var_list.bytes_list.value[i] = value
def replicate_states(self, state_coll_name):
state_list = self._metagraph.collection_def[state_coll_name]
num_states = len(state_list.node_list.value)
for replica_id in range(1, FLAGS.num_gpus):
for i in range(num_states):
state_list.node_list.value.append(state_list.node_list.value[i])
for replica_id in range(FLAGS.num_gpus):
for i in range(num_states):
index = replica_id * num_states + i
state_list.node_list.value[index] = with_autoparallel_prefix(
replica_id, state_list.node_list.value[index])
def auto_parallel(metagraph, model):
from tensorflow.python.grappler import tf_optimizer
rewriter_config = rewriter_config_pb2.RewriterConfig()
rewriter_config.optimizers.append("autoparallel")
rewriter_config.auto_parallel.enable = True
rewriter_config.auto_parallel.num_replicas = FLAGS.num_gpus
optimized_graph = tf_optimizer.OptimizeGraph(rewriter_config, metagraph)
metagraph.graph_def.CopyFrom(optimized_graph)
UpdateCollection(metagraph, model)
def safer_log(x, eps=eps_micro):
"""Avoid nan when x is zero by adding small eps.
Note that if x.dtype=tf.float16, \forall eps, eps < 3e-8, is equal to zero.
"""
return tf.log(x + eps)
def get_activation(name):
"""Returns activation function given name."""
name = name.lower()
if name == "relu":
return tf.nn.relu
elif name == "sigmoid":
return tf.nn.sigmoid
elif name == "tanh":
return tf.nn.sigmoid
elif name == "elu":
return tf.nn.elu
elif name == "linear":
return lambda x: x
else:
raise ValueError("Unknown activation name {}".format(name))
return name
def hparam_fn(hparams, prefix=None):
"""Returns a function to get hparam with prefix in the name."""
if prefix is None or prefix == "":
prefix = ""
elif isinstance(prefix, str):
prefix += "_"
else:
raise ValueError("prefix {} is invalid".format(prefix))
get_hparam = lambda name: getattr(hparams, prefix + name)
return get_hparam
def filter_activation_fn():
"""Returns a activation if actv is an string name, otherwise input."""
filter_actv = lambda actv: (
get_activation(actv) if isinstance(actv, str) else actv)
return filter_actv
def get_optimizer(name):
name = name.lower()
if name == "sgd":
optimizer = tf.train.GradientDescentOptimizer
elif name == "momentum":
optimizer = partial(tf.train.MomentumOptimizer,
momentum=0.05, use_nesterov=True)
elif name == "adam":
optimizer = tf.train.AdamOptimizer
# optimizer = partial(tf.train.AdamOptimizer, beta1=0.5, beta2=0.9)
elif name == "lazy_adam":
optimizer = tf.contrib.opt.LazyAdamOptimizer
# optimizer = partial(tf.contrib.opt.LazyAdamOptimizer, beta1=0.5, beta2=0.9)
elif name == "adagrad":
optimizer = tf.train.AdagradOptimizer
elif name == "rmsprop":
optimizer = tf.train.RMSPropOptimizer
else:
raise ValueError("Unknown optimizer name {}.".format(name))
return optimizer
def replace_list_element(data_list, x, y):
return [y if each == x else each for each in data_list]
def get_parameter_count(excludings=None, display_count=True):
trainables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
count = 0
for var in trainables:
ignored = False
if excludings is not None:
for excluding in excludings:
if var.name.find(excluding) >= 0:
ignored = True
break
if ignored:
continue
if var.shape == tf.TensorShape(None):
tf.logging.warn("var {} has unknown shape and it is not counted.".format(
var.name))
continue
if var.shape.as_list() == []:
count_ = 1
else:
count_ = reduce(lambda x, y: x * y, var.shape.as_list())
count += count_
if display_count:
print("{0:80} {1}".format(
var.name, count_))
return count
def save_emb_visualize_meta(save_path,
emb_var_names,
label_lists,
metadata_names=None):
"""Save meta information about the embedding visualization in tensorboard.
Args:
save_path: a `string` specifying the save location.
emb_var_names: a `list` containing variable names.
label_lists: a `list` of lists of labels, each label list corresponds to an
emb_var_name.
metadata_names: a `list` of file names for metadata, if not specify, will
use emb_var_names.
"""
if not isinstance(emb_var_names, list):
raise ValueError("emb_var_names must be a list of var names.")
if not isinstance(label_lists, list) or not isinstance(label_lists[0], list):
raise ValueError("label_lists must be a list of label lists.")
if metadata_names is None:
metadata_names = emb_var_names
config = projector.ProjectorConfig()
for emb_var_name, metadata_name, labels in zip(
emb_var_names, metadata_names, label_lists):
filename = "metadata-{}.tsv".format(metadata_name)
metadata_path = os.path.join(save_path, filename)
with open(metadata_path, "w") as fp:
for label in labels:
fp.write("{}\n".format(label))
embedding = config.embeddings.add()
embedding.tensor_name = emb_var_name
embedding.metadata_path = metadata_path
summary_writer = tf.summary.FileWriter(save_path)
projector.visualize_embeddings(summary_writer, config)
def create_labels_based_on_codes(codes, K):
"""Take codes and produce per-axis based and prefix based labels.
Args:
codes: a `np.ndarray` of size (N, D) where N data points with D-dimensional
discrete code.
K: a `int` specifying the cardinality of the code in each dimension.
Returns:
label_lists: a list of labels.
"""
N, D = codes.shape
label_lists = []
# Create per-axis labels.
for i in range(D):
label_lists.append(codes[:, i].tolist())
# Create prefix labels.
buffer_basis = 0
for i in range(D):
buffer_basis = buffer_basis * K + codes[:, i]
label_lists.append(buffer_basis.tolist())
return label_lists