A machine learning library for Rust.
GPGPU kernels implemented with krnl.
- Host / Device execution.
- Tensors emulate ndarray
- Host tensors can be borrowed as arrays.
- Tensors / Models / Optimizers can be serialized with serde.
- Portable between platforms.
- Save / resume training progress.
- Fully extensible, in Rust.
#[derive(Layer, Forward)]
#[autograph(forward(Variable4, Output=Variable2))]
struct LeNet5 {
conv1: Conv2,
relu1: Relu,
pool1: MaxPool2,
conv2: Conv2,
relu2: Relu,
pool2: MaxPool2,
flatten: Flatten,
dense1: Dense,
relu3: Relu,
dense2: Dense,
relu4: Relu,
dense3: Dense,
}
impl LeNet5 {
fn new(device: Device, scalar_type: ScalarType) -> Result<Self> {
let conv1 = Conv2::builder()
.device(device.clone())
.scalar_type(scalar_type)
.inputs(1)
.outputs(6)
.filter([5, 5])
.build()?;
let relu1 = Relu;
let pool1 = MaxPool2::builder().filter([2, 2]).build();
let conv2 = Conv2::builder()
.device(device.clone())
.scalar_type(scalar_type)
.inputs(6)
.outputs(16)
.filter([5, 5])
.build()?;
let relu2 = Relu;
let pool2 = MaxPool2::builder().filter([2, 2]).build();
let flatten = Flatten;
let dense1 = Dense::builder()
.device(device.clone())
.scalar_type(scalar_type)
.inputs(16 * 4 * 4)
.outputs(128)
.build()?;
let relu3 = Relu;
let dense2 = Dense::builder()
.device(device.clone())
.scalar_type(scalar_type)
.inputs(128)
.outputs(84)
.build()?;
let relu4 = Relu;
let dense3 = Dense::builder()
.device(device.clone())
.scalar_type(scalar_type)
.inputs(84)
.outputs(10)
.bias(true)
.build()?;
Ok(Self {
conv1,
relu1,
pool1,
conv2,
relu2,
pool2,
flatten,
dense1,
relu3,
dense2,
relu4,
dense3,
})
}
}
let mut model = LeNet5::new(device.clone(), ScalarType::F32)?;
model.set_training(true)?;
let y = model.forward(x)?;
let loss = y.cross_entropy_loss(t)?;
loss.backward()?;
for parameter in model.make_parameter_iter_mut()? {
optimizer.update(learning_rate, parameter)?;
}
See the Neural Network MNIST example.
NVIDIA GeForce GTX 1060 with Max-Q Design
autograph |
tch |
|
---|---|---|
bf16_host |
494.98 ms (β
1.00x) |
78.29 ms (π 6.32x faster) |
f32_host |
7.21 ms (β
1.00x) |
3.15 ms (π 2.28x faster) |
bf16_device |
10.12 ms (β
1.00x) |
17.65 ms (β 1.74x slower) |
f32_device |
1.71 ms (β
1.00x) |
1.19 ms (β
1.43x faster) |
autograph |
tch |
|
---|---|---|
bf16_host |
1.82 s (β
1.00x) |
197.40 ms (π 9.23x faster) |
f32_host |
16.96 ms (β
1.00x) |
9.49 ms (β
1.79x faster) |
bf16_device |
4.61 ms (β
1.00x) |
48.71 ms (β 10.57x slower) |
f32_device |
4.60 ms (β
1.00x) |
1.84 ms (π 2.49x faster) |
See the Neural Network benchmark.
Dual-licensed to be compatible with the Rust project.
Licensed under the Apache License, Version 2.0 http://www.apache.org/licenses/LICENSE-2.0 or the MIT license http://opensource.org/licenses/MIT, at your option. This file may not be copied, modified, or distributed except according to those terms.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.