-
Notifications
You must be signed in to change notification settings - Fork 36
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Error loading the weights #5
Comments
It is strange, maybe you can try to use the baiduyun link first which do not need to do unzip and I have checked all the layers you mentioned contained in the |
Hi, I have checked the problem. You can refer to this Support Transformers 4.31.0. It is caused by the version of the transfromers package. You can try to degrade it to 4.28.1 which is the default version we used. |
Thank you very much, that solved the problem. Just one more question, if I want to add more prompts (questions) can I create a list of questions? For instance:
Thanks again. |
hm,you may also duplicate the image dict variable to length 2, indicating the image input for the second question. Our current version does not consider multiple rounds of dialogue. In fact, if you want to ask another question the easiest way is to just rewrite the previous question. |
Thank you for making available your model. Awesome work!
I was trying to load the model and I got the error message (below). I downloaded all files and then I concatenate them doing
cat RadFM.z* > model.zip
. Then I unzip performing:unzip model.zip
and get the filepytorch_model.bin
. Am I doing this procedure right? Thank you.RuntimeError: Error(s) in loading state_dict for MultiLLaMAForCausalLM: Unexpected key(s) in state_dict: "lang_model.model.layers.0.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.1.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.2.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.3.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.4.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.5.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.6.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.7.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.8.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.9.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.10.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.11.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.12.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.13.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.14.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.15.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.16.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.17.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.18.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.19.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.20.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.21.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.22.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.23.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.24.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.25.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.26.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.27.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.28.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.29.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.30.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.31.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.32.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.33.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.34.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.35.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.36.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.37.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.38.self_attn.rotary_emb.inv_freq", "lang_model.model.layers.39.self_attn.rotary_emb.inv_freq", "embedding_layer.bert_model.embeddings.position_ids".
The text was updated successfully, but these errors were encountered: