-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmnist_to_spikes.py
320 lines (250 loc) · 9.64 KB
/
mnist_to_spikes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from __future__ import print_function
import numpy as np
from numpy import int16, uint8
import cv2
from time import time, sleep
from pydvs.virtual_cam import VirtualCam
import pydvs.generate_spikes as gs
import os
import glob2
KEY_SPINNAKER = 0
MODE_128 = "128"
MODE_64 = "64"
MODE_32 = "32"
MODE_16 = "16"
UP_POLARITY = "UP"
DOWN_POLARITY = "DOWN"
MERGED_POLARITY = "MERGED"
RECTIFIED_POLARITY = "RECTIFIED"
POLARITY_DICT = {UP_POLARITY: uint8(0),
DOWN_POLARITY: uint8(1),
MERGED_POLARITY: uint8(2),
RECTIFIED_POLARITY: uint8(3),
0: UP_POLARITY,
1: DOWN_POLARITY,
2: MERGED_POLARITY,
3: RECTIFIED_POLARITY}
OUTPUT_RATE = "RATE"
OUTPUT_TIME = "TIME"
OUTPUT_TIME_BIN = "TIME_BIN"
OUTPUT_TIME_BIN_THR = "TIME_BIN_THR"
BEHAVE_MICROSACCADE = "SACCADE"
BEHAVE_ATTENTION = "ATTENTION"
BEHAVE_TRAVERSE = "TRAVERSE"
BEHAVE_FADE = "FADE"
IMAGE_TYPES = ["png", 'jpeg', 'jpg']
def wait_ms(prev_time_ms, wait_time_ms):
t = time.time()*1000. - prev_time_ms
while t < wait_time_ms:
if t < 0:
break
sleep((wait_time_ms - t)/1000.)
t = time.time()*1000. - prev_time_ms
def get_filenames(img_dir):
imgs = []
image_list = glob2.glob(os.path.join(img_dir, "**/*.png"))
image_list.sort()
for img in image_list:
if os.path.isfile(img):
imgs.append(img)
return imgs
def update_ref(output_type, abs_diff, spikes, ref, thresh, frame_time_ms, \
num_spikes=1, history_weight=1., log2_table=None):
if output_type == OUTPUT_RATE:
return gs.update_reference_rate(abs_diff, spikes, ref, thresh,
frame_time_ms,
history_weight)
elif output_type == OUTPUT_TIME_BIN_THR:
return gs.update_reference_time_binary_thresh(abs_diff, spikes, ref,
thresh,
frame_time_ms,
num_spikes=num_spikes,
history_weight=history_weight,
log2_table=log2_table)
else:
return gs.update_reference_time_thresh(abs_diff, spikes, ref,
thresh,
frame_time_ms,
history_weight)
def make_spikes_lists(output_type, pos, neg, max_diff, \
flag_shift, data_shift, data_mask, \
frame_time_ms, thresh, \
num_bins=1, log2_table=None):
if output_type == OUTPUT_RATE:
return gs.make_spike_lists_rate(pos, neg, max_diff,
thresh,
flag_shift, data_shift, data_mask,
frame_time_ms,
key_coding=KEY_SPINNAKER)
elif output_type == OUTPUT_TIME_BIN_THR:
return gs.make_spike_lists_time_bin_thr(pos, neg, max_diff,
flag_shift, data_shift, data_mask,
frame_time_ms,
thresh,
thresh,
num_bins,
log2_table,
key_coding=KEY_SPINNAKER)
else:
return gs.make_spike_lists_time(pos, neg, max_diff,
flag_shift, data_shift, data_mask,
frame_time_ms,
frame_time_ms,
thresh,
thresh,
key_coding=KEY_SPINNAKER)
setname = "t10k"
# setname = "training"
# setname = "testing"
orig_w = 28
cam_w = 32
# cam_w = 28
cam_fps = 100
frame_time_ms = np.round(1000./cam_fps)
frames_per_image = 10
on_time_ms = frame_time_ms*frames_per_image
off_time_ms = on_time_ms*3
frames_off = int(off_time_ms/cam_fps)
img_idx = 1
start_img_idx = 0
num_images = 60000 if setname == 'training' else 10000
frames_per_saccade = cam_fps//3 - 1
frames_per_microsaccade = 1
polarity_name = MERGED_POLARITY
# polarity_name = RECTIFIED_POLARITY
polarity = POLARITY_DICT[polarity_name]
output_type = OUTPUT_TIME
if output_type == OUTPUT_TIME or output_type == OUTPUT_RATE:
num_bins = np.floor(frame_time_ms)
else:
num_bins = 5.
t_bin_ms = frame_time_ms//num_bins
print("cam_fps, frame_time_ms, num_bins, t_bin_ms")
print(cam_fps, frame_time_ms, num_bins, t_bin_ms)
print("num_bins, t_bin_ms")
print(num_bins, t_bin_ms)
rate_code = output_type == OUTPUT_RATE
log_time_code = (output_type == OUTPUT_TIME_BIN_THR) or \
(output_type == OUTPUT_TIME_BIN)
print("using log spike time coding? %s"%(log_time_code))
history_weight = 0.99
behaviour = VirtualCam.BEHAVE_MICROSACCADE
max_dist = 1
data_shift = uint8(np.log2(cam_w))
flag_shift = uint8(2*data_shift)
data_mask = uint8(cam_w - 1)
num_spikes = 1
log2_table = gs.generate_log2_table(num_spikes, int(num_bins))[0]
inh_width = 2
is_inh_on = False
inh_coords = gs.generate_inh_coords(cam_w, cam_w, inh_width)
thresh = int( (2**8 - 1)*0.05 )
dir_name = "./mnist_spikes/mnist_behave_%s_pol_%s_enc_%s_thresh_%d_hist_%d_inh_%s___%d_frames_at_%dfps_%dx%d_res_spikes"%\
(behaviour, polarity_name, output_type, thresh, int(history_weight*100), \
is_inh_on, frames_per_image, cam_fps, cam_w, cam_w)
print(dir_name)
if not os.path.exists(dir_name):
os.makedirs(dir_name)
dir_name = "%s/%s"%(dir_name, setname)
if not os.path.exists(dir_name):
os.makedirs(dir_name)
filelist = glob2.glob("%s/*.txt"%(dir_name))
for f in filelist:
os.remove(f)
spk_fname = "%s/mnist__img_%%05d.txt"%\
(dir_name)
ref_start = 0#127
ref = np.ones((cam_w, cam_w), dtype=int16)*ref_start
frm = (cam_w - orig_w)//2
to = frm + orig_w
write2file_count = 0
num_imgs_to_write = 100
base_time = 0
t = 0
valid = False
neg = None
pos = None
max_diff = 0
lists = []
write_buff = []
prev_ms = time()*1000.
start_ms = time()*1000.
image_paths = get_filenames('./mnist/%s'%(setname))
if not image_paths:
print("Cannot find MNIST images")
else:
num_images = min(num_images, len(image_paths))
cx = 0
cy = 0
bg_gray = 0
filename = ""
fade_mask = cv2.imread("pydvs/fading_mask.png", cv2.IMREAD_GRAYSCALE)
fade_mask = cv2.resize(fade_mask, (cam_w, cam_w))
fade_mask = np.float64(fade_mask)/255.0
WINDOW_NAME = 'spikes'
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_AUTOSIZE)
cv2.startWindowThread()
running = True
for img_idx in range(num_images):
filename = image_paths[img_idx]
orig_img = cv2.imread(filename, cv2.IMREAD_GRAYSCALE)
padd_img = np.zeros((cam_w, cam_w), dtype=int16)
padd_img[frm:to, frm:to] = orig_img
ref[:] = ref_start
# padd_img *= fade_mask
cx = 0
cy = 0
t = 0
for img_on_frame in range(frames_per_image):
if img_on_frame == 0:
curr = padd_img
else:
curr, cx, cy = gs.usaccade_image(padd_img, img_on_frame,
frames_per_microsaccade,
max_dist, cx, cy, bg_gray)
if abs(cx) > 1:
cx = 0
elif abs(cy) > 1:
cy = 0
curr = gs.mask_image(curr, fade_mask)
diff, abs_diff, spikes = gs.thresholded_difference(curr, ref, thresh)
if is_inh_on:
spikes = gs.local_inhibition(spikes, abs_diff, inh_coords,
cam_w, cam_w, inh_width)
ref[:] = update_ref(output_type, abs_diff, spikes, ref, thresh, frame_time_ms, \
num_bins, history_weight, log2_table)
neg, pos, max_diff = gs.split_spikes(spikes, abs_diff, polarity)
lists = make_spikes_lists(output_type, pos, neg, max_diff,
flag_shift, data_shift, data_mask,
frame_time_ms,
thresh,
num_bins, log2_table)
spk_img = gs.render_frame(spikes, curr, cam_w, cam_w, polarity)
cv2.imshow(WINDOW_NAME, spk_img)
key = cv2.waitKey(10) & 0xFF
if key == ord('q') or key == ord('Q'):
running = False
break
t_idx = 0
for spk_list in lists:
# print("--------------------------------------------", t_idx)
for spk in spk_list:
# print(t, t_idx)
spk_txt = "%s %f"%(spk, t + t_idx)
# print(spk_txt)
write_buff.append(spk_txt)
t_idx += t_bin_ms
t += frame_time_ms
# print("img %d, time %s, sim time %s"%(img_idx, prev_ms - start_ms, t))
if not running:
break
outf = open(spk_fname%img_idx, "w")
outf.write("\n".join(write_buff))
outf.close()
write_buff = []
if (img_idx + 1)%100 == 0:
print("MNIST %s set: image %s"%(setname, img_idx+1))
cv2.destroyAllWindows()
cv2.waitKey(1)
# sys.exit(0)
print("done converting images!!!")