-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnaive-active-learning.jl
179 lines (134 loc) · 5.06 KB
/
naive-active-learning.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Simple active learning workflow. Proof of concept.
using AtomsBase
using InteratomicPotentials
using InteratomicBasisPotentials
using PotentialLearning
using LinearAlgebra
using StaticArrays
using UnitfulAtomic
using Unitful
using Atomistic
using NBodySimulator
using Plots
# TODO: add to InteratomicBasisPotentials.jl?
function InteratomicPotentials.energy_and_force(s::AbstractSystem, p::ACE)
B = evaluate_basis(s, p.basis_params)
dB = evaluate_basis_d(s, p.basis_params)
e = austrip.(B' * p.coefficients * 1u"eV")
f = [SVector(austrip.(d' * p.coefficients .* 1u"eV/Å")...) for d in dB]
return (; e, f)
end
# TODO: use DFTK.jl
function get_dft_data(input)
return load_dataset(input)
end
# TODO: analyze MD result and determine if retrain is needed
function retrain(md_res)
return length(md_res) == 0
end
# Load input parameters
args = ["experiment_path", "active-learning-a-HfO2/",
"dataset_path", "../data/",
"dataset_filename", "a-Hfo2-300K-NVT.extxyz",
"n_train_sys", "80",
"n_test_sys", "20",
"n_body", "3",
"max_deg", "3",
"r0", "1.0",
"rcutoff", "5.0",
"wL", "1.0",
"csp", "1.0",
"w_e", "1.0",
"w_f", "1.0",
"steps", "500",
"ref_temp", "300.0",
"delta_t", "1.0",
"delta_step", "100"]
args = length(ARGS) > 0 ? ARGS : args
input = get_input(args)
# Create experiment folder
path = input["experiment_path"]
run(`mkdir -p $path`)
# Run active learning MD simulation
Δt = input["delta_t"]u"fs"
steps = input["steps"]
Δstep = input["delta_step"]
curr_steps = 0
md_res = []
curr_steps_cp = 0
md_res_cp = []
potential = []
while curr_steps < steps
if retrain(md_res)
println("Training. Step $(curr_steps).")
# Load checkpoint
global md_res, curr_steps, md_res_cp, curr_steps_cp
md_res = md_res_cp
curr_steps = curr_steps_cp
# Generate DFT data
train_sys, e_train, f_train_v, s_train,
test_sys, e_test, f_test_v, s_train = get_dft_data(input)
# Linearize forces
f_train, f_test = linearize_forces.([f_train_v, f_test_v])
# Define ACE params
n_body = input["n_body"]
max_deg = input["max_deg"]
r0 = input["r0"]
rcutoff = input["rcutoff"]
wL = input["wL"]
csp = input["csp"]
atomic_symbols = unique(atomic_symbol(first(train_sys)))
params = ACEParams(atomic_symbols, n_body, max_deg, wL, csp, r0, rcutoff)
# Calculate descriptors. TODO: add this to PotentialLearning.jl?
calc_B(pars, sys) = vcat(evaluate_basis.(sys, [pars])'...)
calc_dB(pars, sys) = vcat([hcat(evaluate_basis_d(s, pars)...)' for s in sys]...)
B_time = @time @elapsed B_train = calc_B(params, train_sys)
dB_time = @time @elapsed dB_train = calc_dB(params, train_sys)
B_test = calc_B(params, test_sys)
dB_test = calc_dB(params, test_sys)
# Calculate coefficients β
w_e, w_f = input["w_e"], input["w_f"]
β = learn(B_train, dB_train, e_train, f_train, w_e, w_f)
# Define interatomic potential: ACE
global potential = ACE(β, params)
# Calculate predictions
e_test_pred = B_test * β
f_test_pred = dB_test * β
# Calculate metrics
e_mae, e_rmse, e_rsq = calc_metrics(e_test_pred, e_test)
f_mae, f_rmse, f_rsq = calc_metrics(f_test_pred, f_test)
# Analyze metrics, report, and take corrective actions.
if e_mae > 1.0
println("Warning: fitting error too high.")
end
else
# Save checkpoint
global md_res, curr_steps, md_res_cp, curr_steps_cp
md_res_cp = md_res
curr_steps_cp = curr_steps
end
# Update thermostat
ref_temp = input["ref_temp"]u"K"
ν = 10 / Δt # stochastic collision frequency
thermostat = NBodySimulator.AndersenThermostat(austrip(ref_temp), austrip(ν))
# Run MD simulation
println("Running MD. Steps $(curr_steps) to $(curr_steps+Δstep).")
if curr_steps == 0
global md_res, curr_steps, potential
curr_steps += Δstep
init_sys = first(test_sys)
sim = NBSimulator(Δt, curr_steps, thermostat = thermostat)
md_res = simulate(init_sys, sim, potential)
else
global md_res, curr_steps, potential
curr_steps += Δstep
sim = NBSimulator(Δt, curr_steps, t₀=get_time(md_res))
md_res = simulate(get_system(md_res), sim, potential)
end
end
# Post-process and save results
println("Post-processing...")
savefig(Atomistic.plot_temperature(md_res, 10), path*"temp.svg")
savefig(Atomistic.plot_energy(md_res, 10), path*"energy.svg")
savefig(Atomistic.plot_rdf(md_res, 1.0, Int(0.95 * steps)), path*"rdf.svg")
Atomistic.animate(md_res, path*"anim.gif")