
GPU-Accelerated Conversion of RGBD Images to
Textured Triangle Meshes

Collin Boots
University of Pennsylvania

Dalton Banks
University of Pennsylvania

Figure 1. Depth data (placeholder)

Abstract

Mesh reconstruction from low-cost RGBD cameras, as opposed to simple point cloud storage,
holds many possibilities, such as ease of object recognition and greatly reduced memory re-
quirements. A modular framework was developed for extracting and synchronizing RGB and
depth data from an RGBD camera, performing CUDA-based data processing on a GPU, and
rendering the transformed data with OpenGL via CUDA-OpenGL interop on the GPU. In par-
ticular, data was gathered from the Microsoft Kinect using OpenNI, CUDA kernels were used
to perform neighborhood-based estimation of point normals and dense surface mesh recon-
struction in camera-space, and a variety of GLSL shaders were implemented to visualize the
processed data. Further work will extend the framework to perform image registration of suc-
cessive RBGD frames for reconstruction from camera movement, and will perform adaptive
mesh resampling in order to further decrease memory usage.

1



2 CODE OVERVIEW

1. Introduction

Previous work has demonstrated the diverse capabilities of RGBD cameras, from
generating highly accurate 3D surface models [Newcombe et al. 2011] to reliably
estimating 3D pose [Endres et al. 2012; Taguchi et al. ]. However, many algorithms
attempt to store the generated environment as a RGB 3D point cloud, which is not
easily adaptable to dynamic environments, requires enormous quantities of memory
to store large environments, and provides no intuition to higher perception processes
about distinct objects beyond a volumetric approximation. Other approaches have
been able to store and merge the surface data more efficiently, but still regard the
environment as a unified whole rather than discrete objects. By instead extracting
meaningful geometry from the RGBD data in the form of triangle meshes, many
advantages can be realized:

1. High storage efficiency

2. Natural low level object segmentation

3. Easy to manipulate, modify, and render in real time

4. Efficient and easy to process intuition of geometry that higher cognitive func-
tions can use for object recognition and manipulation tasks.

5. Straightforward tradeoff between simplicity and accuracy with mesh resolution

2. Code Overview

2.1. Image processing pipeline

The overall image processing pipeline is shown in Figure 2. First, an RGB frame and
a depth frame are pulled from the Kinect and shipped to the GPU for processing. A
world-space point cloud is then generated from the RGBD data, and a neighborhood-
based estimate of the point normals is then extracted for later processing. Finally,
the point cloud is triangulated and the generated mesh is passed to OpenGL where a
variety of rendering options are implemented.

The underlying architecture is very modular, and can be easily extended to handle
input RGBD streams other than the Kinect (as demonstrated in the implementation
of log streams). A generic RGBD frame format is used, allowing computation and
visualization to be performed without regard to how the data was obtained.

A more detailed view of the program flow is shown in Figure 3. Note that after
the RGB and depth frames are synchronized and shipped to the GPU, all computation
and rendering is performed on the GPU, enhancing performance and allowing the
CPU to be free for other tasks. The ComputeNormalsFast kernel supplants an earlier

2



2.1 Image processing pipeline 2 CODE OVERVIEW

Figure 2. Image Processing Pipeline

iteration, ComputeNormals, which was written for estimation quality at the cost of a
significant performance penalty.

Finally, Figure 4 shows a more detailed view of the OpenGL rendering pipeline.
The rendering pipeline is also written in a very modular manner, allowing both for
rapid code modification to experiment with different visualazation techniques, as well
as hooks (note the black diamonds) for keypresses to completely change the render
output on-the-fly.

3



3 PERFORMANCE ANALYSIS

Figure 3. Overall Program Flow

3. Performance Analysis

Our point normals kernel was implemented as follows. A window radius is first spec-
ified as an algorithm parameter. For each point, we loop through its neighboring
points in screen space in the square window specified by the radius, and pair it with a
screen-space orthogonal point at the same radius. If both points are within a specified
radius from the center point in world space, we take the cross product to compute
the normal, which is then flipped if pointing away from the camera. If sufficiently
many valid normals are found, we average them to produce the final normal estimate,
otherwise we discard the point.

To improve the runtime of the point normals kernel, we reimplemented the algo-
rithm using shared memory. In the shared memory implementation, all points in given

4



3 PERFORMANCE ANALYSIS

Figure 4. OpenGL Pipeline

thread block are first loaded into shared memory, along with the points lying within
the specified neighborhood radius of the edges of the thread block, and the distance
and cross product calculations are then performed using shared memory access. The
results of the shared memory optimization on kernel runtime are shown for a range of
window radii using a thread block size of 8x8.

As demonstrated, the shared memory optimization reduced the kernel runtime by
approximately a factor of 2. The impact on the overall FPS was less dramatic, though
still pronounced, due to the time spent in the rendering pipeline. All testing for this
project was conducted on an Intel Core i5-2450M CPU, 2.5GHz 6GB (Windows 8,
64-bit OS) and an NVIDIA GeForce GT 525M GPU.

5



REFERENCES REFERENCES

Figure 5. Global vs. shared memory access: kernel runtime

Figure 6. Global vs. shared memory access: frame rate

References

ENDRES, F., ET AL. 2012. An Evaluation of the RGB-D SLAM System. Robotics and
Automation (ICRA), 2012 IEEE International Conference on.. 2

NEWCOMBE, R. A., ET AL. 2011. KinectFusion: Real-time dense surface mapping and
tracking. 2

TAGUCHI, Y., JIAN, Y.-D., RAMALINGAM, S., AND FENG, C. Point-Plane SLAM for
Hand-Held 3D Sensors. Tech. rep. 2

6


