
Embedded GNU/Linux Developer Meetup
Upparat

About me &
my work at CARU

Number of devices vs
developer happiness to update devices

dev

ice
s

Dec 2017 Dec 2018 Dec 2019

:-) :-/ :-(

Challenges?

- Device Sided Update Solutions
- SWUpdate
- RAUC
- …

- “Platform Solutions”
- Mender
- Balena
- Hawkbit
- (Bosch IoT Rollouts)
- …

But what if you already use AWS IoT anyhow?

“AWS IoT is a managed cloud service that lets connected devices easily and
securely interact with cloud applications and other devices”

AWS IoT

IoT Devices AWS Services
MQTT
Broker

MQTT “Interact”

AWS IoT Jobs?

“AWS IoT jobs can be used to define a set of remote operations that are
sent to and executed on one or more devices connected to AWS IoT.”

AWS IoT

S3
{
 "cmd": "do-bling"
}

Job Document

“One of us”

Create Job

$aws/things/hal9000/jobs/notify {QUEUED & IN_PROGRESS jobs}

IoT Devices

HAL9000

“bling” $aws/things/hal9000/jobs/bling/get

$aws/things/hal9000/jobs/bling/get/accepted {JobDocument}

hal9000 processes job “bling” …

$aws/things/hal9000/jobs/bling/update {“status":"SUCCEEDED"}

AWS IoT

Create Job

IoT Devices

“get_bling”
...

AWS IoT Jobs can be cancelled / deleted / timed-out

Cancel Job
“get_bling”

10 minutes later

$aws/things/hal9000/jobs/notify

$aws/events/job/get_bling/cancelled

hal9000 must abort job “get_bling” …

hal9000 processes job “get_bling” …

AWS IoT

S3

Create Job

IoT Devices

HAL9000

“get_bling”

...

hal9000 processes job “get_bling” …

AWS IoT Jobs can have pre-signed URLs

fancy_bling.zip

{
 "cmd": “get-new-bling",
 "url": “${aws:iot:s3-presigned-url:https://xxx.s3.amazonaws.com/fancy_bling.zip}”
}

HTTP GET {jobDocument.url}

Upparat?!

AWS IoT Jobs + $DEVICE_UPDATE_PROCESS
= “Update Apparat” aka Upparat

AWS IoT $DEVICE_UPDATE_PROCESS

runs on

interacts interacts

Upparat …

- runs on the device
- takes care of AWS IoT job handling
- takes care of reliably downloading the firmware
- provides “hooks” to adapt to your use case
- is written in Python :)

Upparat: Hooks

mandatory
version = /etc/upparat/hooks/version.sh
install = /etc/upparat/hooks/install.sh

optional
download = /etc/upparat/hooks/download.sh
restart = /etc/upparat/hooks/restart.sh
ready = /etc/upparat/hooks/ready.py

Upparat: Version Hook
#!/usr/bin/env bash
Gets the system version

$1: time elapsed since first call
$2: retry count
$3: meta from job document

I.e. 1.6.2-RELEASE
cat /etc/caru-version

{
 "action": "update",
 "version": "1.6.4-RELEASE",
 "file": “${aws:iot:s3-presigned-url:…}”
}

Upparat Job Document if not matching:
install update

Upparat: Download Hook (Optional)

#!/usr/bin/env bash
Start download if critical section lock isn't present

$1: timestamp from first call
$2: retry count
$3: meta from job document

if test -f /tmp/cortex.critical.lock; then
 exit 3 # retry later
fi

Upparat: Install Hook
#!/usr/bin/env bash

Installs the downloaded rauc bundle

$1: time elapsed since first call
$2: retry count
$3: meta from job document
$4: file location

if test -f /tmp/cortex.critical.lock; then
 # Cortex is running a critical section -> retry later
 exit 3
else
 rauc install $4
fi

Example Setup
RAUC w/ 2 partitions

Upparat: Restart Hook (Optional)
#!/usr/bin/env bash

Restarts the system if critical section lock isn't present
$1: time elapsed since first call
$2: retry count
$3: meta from job document
$4: force job ("True" or "False")

swallow SIGTERM which we will receive after emiting reboot because
we don't want to fail this hook because it could lead to a failed job.
trap "" SIGTERM

if [! -f /tmp/cortex.critical.lock] || ["$4" == "True"]; then
 sudo reboot
 sleep 30
 # something is very wrong if we are still here.
 exit 1
else
 exit 3
fi

Upparat: Ready Hook (Optional)
#!/usr/bin/env python3
import json
import subprocess
import sys

MAX_RETRY_ATTEMPTS = 3

def main(args):
 rauc_status = subprocess.run(
 ["rauc", "status", "--output-format=json"],
 stdout=subprocess.PIPE,
 universal_newlines=True,
)

 rauc_status_details = json.loads(rauc_status.stdout)
 booted_slot = rauc_status_details["booted"]

 # Get remaining attempts
 barebox_state = subprocess.run(
 ["sudo", "barebox-state", “-d"],
 stdout=subprocess.PIPE, universal_newlines=True
)

 remaining_attempts_key = "bootstate.{}.remaining_attempts".format(booted_slot)
 remaining_attempts = 0
 for line in barebox_state.stdout.splitlines():
 key, value = line.split("=")
 if key == remaining_attempts_key:
 remaining_attempts = int(value)
 break

 # Signal retry if slot not (yet) marked as good
 if remaining_attempts != MAX_RETRY_ATTEMPTS:
 sys.exit(3)

if __name__ == "__main__":
 main(sys.argv[1:])

waits for this:
rauc status mark-good booted

Upparat: Retries hooks on exit code 3

retry_interval = 60
max_retries = 60

if a hook returns exit code 3
Upparat will retry it every 60s
for up to 60 times.

Upparat: Download Handling

“Robust” ;-)

- Resumable (Chunked, HTTP Range Headers)
- Exponential backoff with jitter on errors
- Handles expired pre-signed URLs

Upparat: Minimal Configuration

[broker]
host = akzywbhaxlhqa-ats.iot.eu-central-1.amazonaws.com
port = 443

thing_name = hal9000

certfile = /etc/upparat/certfile
keyfile = /etc/upparat/keyfile
cafile = /etc/upparat/cafile

[hooks]
version = /etc/upparat/hooks/version.sh
install = /etc/upparat/hooks/install.sh

 Demo
 __ /
 _(\ |@@| /
(__/__ \--/ __
 ___|----| | __
 \ }{ /\)_ / _\
 /__/\ __O (__
 (--/\--) __/
)()(
 `---''---`

pip install upparat

github.com/caruhome/upparat

Getting Started

 Q&A!
 __ /
 _(\ |@@| /
(__/__ \--/ __
 ___|----| | __
 \ }{ /\)_ / _\
 /__/\ __O (__
 (--/\--) __/
)()(
 `---''---`

Few questions from my side:
- How does your update process look like?
- What do you like or dislike about it?

- Thanks for coming! :-)

 __
 _(\ |@@|
(__/__ \--/ __
 ___|----| | __
 \ }{ /\)_ / _\
 /__/\ __O (__
 (--/\--) __/
)()(
 `---''---`

