-
Notifications
You must be signed in to change notification settings - Fork 226
/
Copy pathdata_loader.py
90 lines (69 loc) · 3.11 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
import numpy as np
from glob import glob
from PIL import Image
from tqdm import tqdm
import torch
from torchvision import transforms
PIX2PIX_DATASETS = [
'facades', 'cityscapes', 'maps', 'edges2shoes', 'edges2handbags']
def makedirs(path):
if not os.path.exists(path):
os.makedirs(path)
def pix2pix_split_images(root):
paths = glob(os.path.join(root, "train/*"))
a_path = os.path.join(root, "A")
b_path = os.path.join(root, "B")
makedirs(a_path)
makedirs(b_path)
for path in tqdm(paths, desc="pix2pix processing"):
filename = os.path.basename(path)
a_image_path = os.path.join(a_path, filename)
b_image_path = os.path.join(b_path, filename)
if os.path.exists(a_image_path) and os.path.exists(b_image_path):
continue
image = Image.open(os.path.join(path)).convert('RGB')
data = np.array(image)
height, width, channel = data.shape
a_image = Image.fromarray(data[:,:width/2].astype(np.uint8))
b_image = Image.fromarray(data[:,width/2:].astype(np.uint8))
a_image.save(a_image_path)
b_image.save(b_image_path)
class Dataset(torch.utils.data.Dataset):
def __init__(self, root, scale_size, data_type, skip_pix2pix_processing=False):
self.root = root
if not os.path.exists(self.root):
raise Exception("[!] {} not exists.".format(root))
self.name = os.path.basename(root)
if self.name in PIX2PIX_DATASETS and not skip_pix2pix_processing:
pix2pix_split_images(self.root)
self.paths = glob(os.path.join(self.root, '{}/*'.format(data_type)))
if len(self.paths) == 0:
raise Exception("No images are found in {}".format(self.root))
self.shape = list(Image.open(self.paths[0]).size) + [3]
self.transform = transforms.Compose([
transforms.Scale(scale_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
def __getitem__(self, index):
image = Image.open(self.paths[index]).convert('RGB')
return self.transform(image)
def __len__(self):
return len(self.paths)
def get_loader(root, batch_size, scale_size, num_workers=2,
skip_pix2pix_processing=False, shuffle=True):
a_data_set, b_data_set = \
Dataset(root, scale_size, "A", skip_pix2pix_processing), \
Dataset(root, scale_size, "B", skip_pix2pix_processing)
a_data_loader = torch.utils.data.DataLoader(dataset=a_data_set,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers)
b_data_loader = torch.utils.data.DataLoader(dataset=b_data_set,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers)
a_data_loader.shape = a_data_set.shape
b_data_loader.shape = b_data_set.shape
return a_data_loader, b_data_loader