-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
54 lines (44 loc) · 1.61 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/usr/bin/env python
__author__ = 'Christos Margadji'
__credits__ = 'Sebastian Pattinson'
__copyright__ = '2024, University of Cambridge, Computer-aided Manufacturing Group'
__email__ = '[email protected]'
import yaml
import argparse
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import CSVLogger
# local dependencies
from src.interpol import Interpol
from src.dataset.data_module import H5PYModule
def to_namespace(d):
if isinstance(d, dict):
return argparse.Namespace(**{k: to_namespace(v) for k, v in d.items()})
return d
with open("config.yaml", "r") as file:
config_dict = yaml.safe_load(file)
config = to_namespace(config_dict)
if __name__ == "__main__":
data = H5PYModule(config=config)
model = Interpol(config=config)
checkpoint_callback = ModelCheckpoint(
monitor="loss",
filename=f"{config.name}_" + "{epoch:02d}-{val_loss:.2f}",
save_top_k=1,
)
logger = CSVLogger("logs/train")
trainer = pl.Trainer(
deterministic=False,
devices=config.training.gpus if config.training.gpus > 0 else 1,
accelerator="gpu" if config.training.gpus > 0 else "cpu",
max_epochs=config.training.epochs,
strategy="ddp_find_unused_parameters_false",
logger=logger,
log_every_n_steps=5,
callbacks=[checkpoint_callback],
limit_train_batches=1.0,
limit_val_batches=0.0,
precision="16-mixed",
num_sanity_val_steps=0, # Optional: skips sanity check to save time, can be removed
)
trainer.fit(model, data)