forked from stanfordnlp/pyreft
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompatibility.py
394 lines (351 loc) · 14.7 KB
/
compatibility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
"""
Pyreft <-> Adapters compatibility check.
Script adapted from examples/loreft/train.py.
"""
import sys
sys.path.append("./examples/loreft")
import copy
import os
import torch
import argparse
from tqdm import tqdm, trange
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForCausalLM,
AutoModelForSequenceClassification,
DataCollatorForSeq2Seq,
DataCollatorWithPadding,
set_seed,
)
import datetime
from examples.loreft.task_config import task_config
from examples.loreft.dataset import LoReftGLUEDataset, LoReftSupervisedDataset, parse_positions
from examples.loreft.compute_metrics import make_data_collator, make_dataloader
from pyreft import (
TaskType,
get_reft_model,
ReftConfig,
NoreftIntervention, # remove ortho.
LoreftIntervention,
ConsreftIntervention, # constant bias only
LobireftIntervention, # low-rank bitfit reft
DireftIntervention, # direct edit reft
NodireftIntervention, # remove ortho + direct edit reft <- this is like LoRA on time-step
ReftDataCollator
)
import adapters
import adapters.loading
from convert_reft import convert_checkpoint
device = "cuda" if torch.cuda.is_available() else "cpu"
classification_tasks = {"glue"}
residual_stream_component_mapping = {
"robertaformaskedlm": "roberta.encoder.layer[%s].output"
}
dtype_mapping = {
"float32": torch.float32,
"float16": torch.float16,
"bfloat16": torch.bfloat16,
"float8": "float8",
}
intervention_mapping = {
"NoreftIntervention": NoreftIntervention,
"LoreftIntervention": LoreftIntervention,
"ConsreftIntervention": ConsreftIntervention,
"LobireftIntervention": LobireftIntervention,
"DireftIntervention": DireftIntervention,
"NodireftIntervention": NodireftIntervention,
}
def test(
act_fn: str,
add_bias: bool,
model: str,
layers: str,
rank: int,
position: str,
# epochs: int,
seed: int,
intervention_type: str,
max_n_train_example: int,
max_n_eval_example: int,
# is_wandb: bool,
# wandb_name: str,
# gradient_accumulation_steps: int,
batch_size: int,
output_dir: str,
task: str,
# lr: float,
# schedule: str,
data_dir: str,
train_dataset: str,
eval_dataset: str,
# save_model: bool,
# eval_batch_size: int,
# warmup_ratio: float,
# weight_decay: float,
dropout: float,
test_split: str,
# train_on_inputs: bool,
max_length: int,
# use_normalized_template: bool,
allow_cls_grad: bool,
# metric_for_best_model: str,
dtype: str,
# logging_steps: int,
# wandb_dir: str,
# wandb_proj: str,
share_weights: bool,
# greedy_decoding: bool,
# temperature: float,
# top_p: float,
# top_k: float,
args,
):
dtype = dtype_mapping[dtype]
# store/log run details
print(
f"task: {task}, model: {model}, intervention_type: {intervention_type}, "
f"layers: {layers}, rank: {rank}, "
f"position: {position}, "
f"max_length: {max_length}, allow_cls_grad: {allow_cls_grad}"
)
# everything is guarded by a single seed
set_seed(seed)
model_name = model
model_str = model.split("/")[-1]
train_dataset_str = train_dataset
now = datetime.datetime.now().strftime("%Y%m%d%H%M%S%f")
if train_dataset is not None:
run_name = f"{model_str}.{task}.{train_dataset_str}.{test_split}.{now}"
else:
run_name = f"{model_str}.{task}.{now}"
# which layers to intervene on
if layers != "all":
layers = [int(l) for l in layers.split(";")]
else:
temp_config = AutoConfig.from_pretrained(model)
layers = [l for l in range(temp_config.num_hidden_layers)]
# position str takes the following formats:
# f1 -> first token; f2 -> first two tokens.
# f1+l1 -> first and last tokens; f2+l2 -> first and last two tokens.
# fn or ln shares the same intervention.
if "+" in position and not share_weights:
layers += layers
# load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_name,
model_max_length=max_length,
padding_side="right",
use_fast=False,
)
if tokenizer.unk_token == None and tokenizer.pad_token == None:
# raw llama3
print("adding a special padding token...")
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
need_resize = True
else:
tokenizer.pad_token = tokenizer.unk_token
need_resize = False
# load dataset splits
assert task in task_config, f"Unrecognized task: {task}"
train_datasets = task_config[task]["train_datasets"] if train_dataset is None else [train_dataset]
if task == "glue":
eval_datasets = [train_dataset]
else:
eval_datasets = task_config[task]["eval_datasets"] if eval_dataset is None else [eval_dataset]
ReftDataset = LoReftGLUEDataset if task == "glue" else LoReftSupervisedDataset
train_dataset = ReftDataset(
task, train_datasets[0] if task == "glue" or task == "ultrafeedback_pair" \
else (os.path.join(data_dir, train_datasets[0]) if data_dir is not None else train_datasets[0]),
tokenizer, data_split="train", seed=seed, max_n_example=max_n_train_example,
**{"num_interventions": len(layers), "position": position,
"share_weights": share_weights, "test_split": test_split}
)
trigger_tokens = train_dataset.trigger_tokens
num_labels = train_dataset.num_labels
all_eval_datasets = {}
for eval_dataset in eval_datasets:
test_splits = test_split.split(";")
all_eval_datasets[eval_dataset] = {}
for split in test_splits:
raw_eval = ReftDataset(
task, eval_dataset if task == "glue" else os.path.join(data_dir, eval_dataset),
tokenizer, data_split=split, seed=seed, max_n_example=max_n_eval_example,
**{"num_interventions": len(layers), "position": position,
"share_weights": share_weights}
)
all_eval_datasets[eval_dataset][split] = [raw_eval, raw_eval.raw_dataset]
eval_datasets = all_eval_datasets
# load model based on task type.
if task in classification_tasks:
config = AutoConfig.from_pretrained(
model, num_labels=num_labels,
finetuning_task=train_dataset_str,
load_in_8bit=True if dtype == "float8" else False,
device_map=device
)
# full precision loading since usually for small models
model = AutoModelForSequenceClassification.from_pretrained(
model,
config=config, # just providing the label
torch_dtype=dtype if dtype != "float8" else None,
load_in_8bit=True if dtype == "float8" else False,
device_map=device
)
else:
model = AutoModelForCausalLM.from_pretrained(
model,
torch_dtype=dtype if dtype != "float8" else None, # save memory
load_in_8bit=True if dtype == "float8" else False,
device_map=device
)
config = model.config
if need_resize:
model.resize_token_embeddings(len(tokenizer))
intervention_type = intervention_mapping[intervention_type]
# select collator based on the type
if task in classification_tasks:
data_collator_fn = DataCollatorWithPadding(
tokenizer=tokenizer,
padding="longest"
)
else:
data_collator_fn = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
model=model,
label_pad_token_id=-100,
padding="longest"
)
data_collator = ReftDataCollator(data_collator=data_collator_fn)
# intervention config based on model type
intervention_dtype = torch.bfloat16 if isinstance(dtype, str) else dtype
model_arch = model.config.architectures[0].lower()
if model_arch in residual_stream_component_mapping:
representations = [{
"component": residual_stream_component_mapping[model_arch] % l,
"low_rank_dimension": rank,
"intervention": intervention_type(
embed_dim=config.hidden_size, low_rank_dimension=rank,
dropout=dropout, dtype=intervention_dtype, act_fn=act_fn, device=device,
add_bias=add_bias
)
} for l in layers]
task_type=TaskType.SEQ_CLS
else:
representations = [{
"layer": l, "component": "block_output",
"low_rank_dimension": rank,
"intervention": intervention_type(
embed_dim=config.hidden_size, low_rank_dimension=rank,
dropout=dropout, dtype=intervention_dtype, act_fn=act_fn, device=device,
add_bias=add_bias
)
} for l in layers]
task_type=TaskType.CAUSAL_LM
reft_config = ReftConfig(representations=representations)
reft_model = get_reft_model(model, reft_config, set_device=not isinstance(dtype, str))
reft_model.print_trainable_parameters()
# for GLUE tasks, we enable gradients on the classifier head.
# the parameter will be counted as well.
if task == "glue" and allow_cls_grad:
for param in reft_model.model.classifier.parameters():
# reft_model with HF trainer will automatically pick up these params to optimize
param.requires_grad = True
n_params = reft_model.count_parameters(include_model=False)
# save model
chkpt_folder = f"{output_dir}/{run_name}"
reft_model.save(chkpt_folder)
# ensure everything is in eval mode
reft_model.model.eval()
for k,v in reft_model.interventions.items():
_ = v[0].eval()
print({"n_params": n_params})
# Copy model
adapter_model = copy.deepcopy(model)
adapters.init(adapter_model)
# Convert pyreft config to Adapters config
if intervention_type == LoreftIntervention:
config_class = adapters.LoReftConfig
elif intervention_type == NoreftIntervention:
config_class = adapters.NoReftConfig
elif intervention_type == NodireftIntervention:
config_class = adapters.DiReftConfig
else:
raise ValueError("Unsupported intervention type")
prefix_positions, suffix_positions = parse_positions(position)
config = config_class(
layers=layers,
r=rank,
prefix_positions=prefix_positions,
suffix_positions=suffix_positions,
tied_weights=share_weights
)
adapter_model.add_adapter("my_reft", config=config)
# Reload pyreft checkpoint to Adapters model
state_dict = convert_checkpoint(chkpt_folder, "my_reft")
loader = adapters.loading.AdapterLoader(adapter_model)
loading_info = {}
loader.load_from_state_dict(state_dict, "my_reft", loading_info=loading_info)
assert len(loading_info["unexpected_keys"]) == 0, "Unexpected keys in loading."
adapter_model = adapter_model.to(device)
adapter_model.adapter_to("my_reft", dtype=dtype)
adapter_model.eval()
# do eval
for split, (eval_dataset, data_items) in eval_datasets[list(eval_datasets.keys())[0]].items():
data_collator = data_collator if data_collator is not None else \
make_data_collator(tokenizer, reft_model.model)
eval_dataloader = make_dataloader(eval_dataset, batch_size, data_collator, shuffle=False)
eval_iterator = tqdm(eval_dataloader, position=0, leave=True)
with torch.inference_mode():
for step, inputs in enumerate(eval_iterator):
for k, v in inputs.items():
if v is not None and isinstance(v, torch.Tensor):
inputs[k] = v.to(device)
# [layers, batch_size, positions]
intervention_locations = inputs["intervention_locations"].permute(1, 0, 2)
# intervention_locations -= 1
# forward pass with pyreft model
_, cf_outputs = reft_model(
{"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"]},
unit_locations={"sources->base": (None, intervention_locations.tolist())}
)
# forward pass with adapters model
with adapters.AdapterSetup("my_reft"):
adapter_outputs = adapter_model(
**{"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"]}
)
if not torch.allclose(cf_outputs.logits, adapter_outputs.logits, atol=1e-3):
print(cf_outputs.logits)
print(adapter_outputs.logits)
raise ValueError("Adapter model is not the same as the reft model.")
print("All checks successful for {}.".format(split))
def main():
parser = argparse.ArgumentParser(description="A simple script that takes different arguments.")
parser.add_argument('-task', '--task', type=str, default=None)
parser.add_argument('-data_dir', '--data_dir', type=str, default="./datasets")
parser.add_argument('-train_dataset', '--train_dataset', type=str, default=None)
parser.add_argument('-eval_dataset', '--eval_dataset', type=str, default=None)
parser.add_argument('-model', '--model', type=str, help='yahma/llama-7b-hf', default='yahma/llama-7b-hf')
parser.add_argument('-seed', '--seed', type=int, help='42', default=42)
parser.add_argument('-l', '--layers', type=str, help='2;10;18;26', default='2;10;18;26')
parser.add_argument('-r', '--rank', type=int, help=8, default=8)
parser.add_argument('-p', '--position', type=str, help='f1+l1', default='f1+l1')
parser.add_argument('-max_n_train_example', '--max_n_train_example', type=int, default=None)
parser.add_argument('-max_n_eval_example', '--max_n_eval_example', type=int, default=None)
parser.add_argument(
'-type', '--intervention_type', type=str,
help='LoreftIntervention', default="LoreftIntervention")
parser.add_argument('-batch_size', '--batch_size', type=int, default=4)
parser.add_argument('-output_dir', '--output_dir', type=str, default="./official_results")
parser.add_argument('-dropout', '--dropout', type=float, default=0.00)
parser.add_argument('-act_fn', '--act_fn', type=str, default=None)
parser.add_argument('-add_bias', '--add_bias', action='store_true')
parser.add_argument('-test_split', '--test_split', type=str, default="validation")
parser.add_argument('-max_length', '--max_length', type=int, help=512, default=512)
parser.add_argument('-allow_cls_grad', '--allow_cls_grad', action='store_true')
parser.add_argument('-dtype', '--dtype', type=str, default="bfloat16" if device == "cuda" else "float32")
parser.add_argument('-sw', '--share_weights', action='store_true')
args = parser.parse_args()
test(**vars(args), args=args)
if __name__ == "__main__":
main()