-
Notifications
You must be signed in to change notification settings - Fork 491
/
Copy pathtensorflow_mnist.py
160 lines (130 loc) · 6.4 KB
/
tensorflow_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
import errno
import byteps.tensorflow as bps
import numpy as np
from tensorflow import keras
import tensorflow as tf
layers = tf.layers
tf.logging.set_verbosity(tf.logging.INFO)
def conv_model(feature, target, mode):
"""2-layer convolution model."""
# Convert the target to a one-hot tensor of shape (batch_size, 10) and
# with a on-value of 1 for each one-hot vector of length 10.
target = tf.one_hot(tf.cast(target, tf.int32), 10, 1, 0)
# Reshape feature to 4d tensor with 2nd and 3rd dimensions being
# image width and height final dimension being the number of color channels.
feature = tf.reshape(feature, [-1, 28, 28, 1])
# First conv layer will compute 32 features for each 5x5 patch
with tf.variable_scope('conv_layer1'):
h_conv1 = layers.conv2d(feature, 32, kernel_size=[5, 5],
activation=tf.nn.relu, padding="SAME")
h_pool1 = tf.nn.max_pool(
h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# Second conv layer will compute 64 features for each 5x5 patch.
with tf.variable_scope('conv_layer2'):
h_conv2 = layers.conv2d(h_pool1, 64, kernel_size=[5, 5],
activation=tf.nn.relu, padding="SAME")
h_pool2 = tf.nn.max_pool(
h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# reshape tensor into a batch of vectors
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# Densely connected layer with 1024 neurons.
h_fc1 = layers.dropout(
layers.dense(h_pool2_flat, 1024, activation=tf.nn.relu),
rate=0.5, training=mode == tf.estimator.ModeKeys.TRAIN)
# Compute logits (1 per class) and compute loss.
logits = layers.dense(h_fc1, 10, activation=None)
loss = tf.losses.softmax_cross_entropy(target, logits)
return tf.argmax(logits, 1), loss
def train_input_generator(x_train, y_train, batch_size=64):
assert len(x_train) == len(y_train)
while True:
p = np.random.permutation(len(x_train))
x_train, y_train = x_train[p], y_train[p]
index = 0
while index <= len(x_train) - batch_size:
yield x_train[index:index + batch_size], \
y_train[index:index + batch_size],
index += batch_size
def main(_):
# BytePS: initialize BytePS.
bps.init()
# Keras automatically creates a cache directory in ~/.keras/datasets for
# storing the downloaded MNIST data. This creates a race
# condition among the workers that share the same filesystem. If the
# directory already exists by the time this worker gets around to creating
# it, ignore the resulting exception and continue.
cache_dir = os.path.join(os.path.expanduser('~'), '.keras', 'datasets')
if not os.path.exists(cache_dir):
try:
os.mkdir(cache_dir)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(cache_dir):
pass
else:
raise
# Download and load MNIST dataset.
(x_train, y_train), (x_test, y_test) = \
keras.datasets.mnist.load_data('MNIST-data-%d' % bps.rank())
# The shape of downloaded data is (-1, 28, 28), hence we need to reshape it
# into (-1, 784) to feed into our network. Also, need to normalize the
# features between 0 and 1.
x_train = np.reshape(x_train, (-1, 784)) / 255.0
x_test = np.reshape(x_test, (-1, 784)) / 255.0
# Build model...
with tf.name_scope('input'):
image = tf.placeholder(tf.float32, [None, 784], name='image')
label = tf.placeholder(tf.float32, [None], name='label')
predict, loss = conv_model(image, label, tf.estimator.ModeKeys.TRAIN)
# BytePS: adjust learning rate based on number of GPUs.
opt = tf.train.RMSPropOptimizer(0.001 * bps.size())
# BytePS: add BytePS Distributed Optimizer.
opt = bps.DistributedOptimizer(opt)
global_step = tf.train.get_or_create_global_step()
train_op = opt.minimize(loss, global_step=global_step)
hooks = [
# BytePS: BroadcastGlobalVariablesHook broadcasts initial variable states
# from rank 0 to all other processes. This is necessary to ensure consistent
# initialization of all workers when training is started with random weights
# or restored from a checkpoint.
bps.BroadcastGlobalVariablesHook(0),
# BytePS: adjust number of steps based on number of GPUs.
tf.train.StopAtStepHook(last_step=200000 // bps.size()),
tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},
every_n_iter=10),
]
# BytePS: pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(bps.local_rank())
# BytePS: save checkpoints only on worker 0 to prevent other workers from
# corrupting them.
checkpoint_dir = './checkpoints' if bps.rank() == 0 else None
training_batch_generator = train_input_generator(x_train,
y_train, batch_size=100)
# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
hooks=hooks,
config=config) as mon_sess:
while not mon_sess.should_stop():
# Run a training step synchronously.
image_, label_ = next(training_batch_generator)
mon_sess.run(train_op, feed_dict={image: image_, label: label_})
if __name__ == "__main__":
tf.app.run()