-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_misspecified_general.py
228 lines (173 loc) · 7.48 KB
/
run_misspecified_general.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
"""
code-base for running simulations 'enhanced parallel bandits' in Section 6.
"""
import numpy as np
#import matplotlib.pyplot as plt
import pickle as pkl
import multiprocessing as mp
#import os
import random
from functions_main import causal_linear_sem_TS
#from prepare_graphs import generate_enhanced_parallel_aug
from config import SIMULATIONS_ESTIMATED_FOLDER
def load_hierarchical_W(d,L,idx=0,return_all=False):
res = pkl.load(open(SIMULATIONS_ESTIMATED_FOLDER+'/hierarchical'+'/hierarchical_d_%d_l_%d_graph_%d.pkl'%(d,L,idx), 'rb'))
Wobs = np.mean(res['Wobs_s'],0)
Wint = np.mean(res['Wint_s'],0)
if return_all is True:
return res['Wobs_s'], res['Wint_s']
elif return_all is False:
return Wobs, Wint
def load_enhanced_parallel_W(N,idx=0,return_all=False):
res = pkl.load(open(SIMULATIONS_ESTIMATED_FOLDER+'/enhanced_parallel'+'/size_N_%d_graph_%d.pkl'%(N,idx), 'rb'))
Wobs = np.mean(res['Wobs_s'],0)
Wint = np.mean(res['Wint_s'],0)
if return_all is True:
return res['Wobs_s'], res['Wint_s']
elif return_all is False:
return Wobs, Wint
n_parameter_sampling = 5
n_repeat_data = 3
T = 5000
#%%
def run_enhanced_fp_mis(N,idx,n_fp_edges=2):
Wobs, Wint = load_enhanced_parallel_W(N,idx)
Omega = np.ones(N)
# parents info.
parents = {}
parents_mis = {}
for i in range(N):
parents[i] = list(np.where(Wobs[i])[0])
parents_mis[i] = list(np.where(Wobs[i])[0])
'''misspecification would be just disturbing the parents.
if there are additional mis-parents, algo is still supposed to work.'''
valid_nonedges = [(j,i) for i in range(N) for j in range(N) if Wobs[i,j]==0 and j < i]
if n_fp_edges > len(valid_nonedges):
n_fp_edges = len(valid_nonedges)
fp_edges = random.sample(valid_nonedges, n_fp_edges)
for fp_edge in fp_edges:
parents_mis[fp_edge[1]].append(fp_edge[0])
res = causal_linear_sem_TS(parents_mis,Wobs,Wint,Omega=Omega,T=T,known_dist=False,available_nodes=None,\
is_reward_intervenable=True,n_parameter_sampling=n_parameter_sampling,\
var_s=0.01,var_p=1.0,n_repeat_data=n_repeat_data)
f = open(SIMULATIONS_ESTIMATED_FOLDER+'/misspecification_fp'+'/size_mis_fp_N_%d_graph_%d.pkl'%(N,idx),'wb')
pkl.dump(res,f)
f.close()
print('N=%d, graph number: %d is finished in %.2f seconds'%(N,idx,res['time']))
return res
def run_enhanced_fn_mis(N,idx,n_fn_edges=2):
Wobs, Wint = load_enhanced_parallel_W(N,idx)
Omega = np.ones(N)
# parents info.
parents = {}
parents_mis = {}
for i in range(N):
parents[i] = list(np.where(Wobs[i])[0])
parents_mis[i] = list(np.where(Wobs[i])[0])
'''misspecification would be just disturbing the parents.
remove a couple edges, i.e., there are false negatives. '''
all_edges = [(j,i) for i in range(N) for j in range(N) if Wobs[i,j]!=0 and j < i]
if n_fn_edges > len(all_edges):
n_fn_edges = len(all_edges)
fn_edges = random.sample(all_edges, n_fn_edges)
for fn_edge in fn_edges:
parents_mis[fn_edge[1]].remove(fn_edge[0])
res = causal_linear_sem_TS(parents_mis,Wobs,Wint,Omega=Omega,T=T,known_dist=False,available_nodes=None,\
is_reward_intervenable=True,n_parameter_sampling=n_parameter_sampling,\
var_s=0.01,var_p=1.0,n_repeat_data=n_repeat_data)
f = open(SIMULATIONS_ESTIMATED_FOLDER+'/misspecification_fn'+'/size_mis_fn_N_%d_graph_%d.pkl'%(N,idx),'wb')
pkl.dump(res,f)
f.close()
print('N=%d, graph number: %d is finished in %.2f seconds'%(N,idx,res['time']))
return res
def run_hierarchical_fn_mis(d,L,idx,n_fn_edges=2):
Wobs, Wint = load_hierarchical_W(d,L,idx)
N = Wobs.shape[-1]
Omega = np.ones(N)
# parents info.
parents = {}
parents_mis = {}
for i in range(N):
parents[i] = list(np.where(Wobs[i])[0])
parents_mis[i] = list(np.where(Wobs[i])[0])
'''misspecification would be just disturbing the parents.
remove a couple edges, i.e., there are false negatives. '''
all_edges = [(j,i) for i in range(N) for j in range(N) if Wobs[i,j]!=0 and j < i]
if n_fn_edges > len(all_edges):
n_fn_edges = len(all_edges)
fn_edges = random.sample(all_edges, n_fn_edges)
for fn_edge in fn_edges:
parents_mis[fn_edge[1]].remove(fn_edge[0])
res = causal_linear_sem_TS(parents_mis,Wobs,Wint,Omega=Omega,T=T,known_dist=False,available_nodes=None,\
is_reward_intervenable=True,n_parameter_sampling=n_parameter_sampling,\
var_s=0.01,var_p=1.0,n_repeat_data=n_repeat_data)
f = open(SIMULATIONS_ESTIMATED_FOLDER+'/misspecification_fn'+'/hierarchical_mis_fn_d_%d_l_%d_graph_%d.pkl'%(d,L,idx),'wb')
pkl.dump(res,f)
f.close()
print('d=%d, L=%d, graph number:%d is finished in %.2f seconds'%(d,L,idx,res['time']))
return res
def run_hierarchical_fp_mis(d,L,idx,n_fp_edges=2):
Wobs, Wint = load_hierarchical_W(d,L,idx)
N = Wobs.shape[-1]
Omega = np.ones(N)
# parents info.
parents = {}
parents_mis = {}
for i in range(N):
parents[i] = list(np.where(Wobs[i])[0])
parents_mis[i] = list(np.where(Wobs[i])[0])
'''misspecification would be just disturbing the parents.
if there are additional mis-parents, algo is still supposed to work.'''
n_fp_edges = 2
valid_nonedges = [(j,i) for i in range(N) for j in range(N) if Wobs[i,j]==0 and j < i]
if n_fp_edges > len(valid_nonedges):
n_fp_edges = len(valid_nonedges)
fp_edges = random.sample(valid_nonedges, n_fp_edges)
for fp_edge in fp_edges:
parents_mis[fp_edge[1]].append(fp_edge[0])
res = causal_linear_sem_TS(parents_mis,Wobs,Wint,Omega=Omega,T=T,known_dist=False,available_nodes=None,\
is_reward_intervenable=True,n_parameter_sampling=n_parameter_sampling,\
var_s=0.01,var_p=1.0,n_repeat_data=n_repeat_data)
f = open(SIMULATIONS_ESTIMATED_FOLDER+'/misspecification_fp'+'/hierarchical_mis_fp_d_%d_l_%d_graph_%d.pkl'%(d,L,idx),'wb')
pkl.dump(res,f)
f.close()
print('d=%d, L=%d, graph number:%d is finished in %.2f seconds'%(d,L,idx,res['time']))
return res
#%%t
# for d=2, L=1
args_2_1 = [(2,1,i) for i in range(1,6)]
# for d=2, L=2
args_2_2 = [(2,2,i) for i in range(1,6)]
# for d=2, L=3
args_2_3 = [(2,3,i) for i in range(1,6)]
# for d=3, L=1
args_3_1 = [(3,1,i) for i in range(1,6)]
# for d=3, L=2
args_3_2 = [(3,2,i) for i in range(1,6)]
# for d=3, L=3
args_3_3 = [(3,3,i) for i in range(1,6)]
# for d=4, L=1
args_4_1 = [(4,1,i) for i in range(1,6)]
# for d=4, L=2
args_4_2 = [(4,2,i) for i in range(1,6)]
# for d=4, L=3
args_4_3 = [(4,3,i) for i in range(1,6)]
# N = 5
args_5 = [(5,i) for i in range(1,6)]
# N = 6
args_6 = [(6,i) for i in range(1,6)]
# N = 7
args_7 = [(7,i) for i in range(1,6)]
# N = 8
args_8 = [(8,i) for i in range(1,6)]
# N = 9
args_9 = [(9,i) for i in range(1,6)]
#args_p = args_5+args_6+args_7+args_8+args_9
args_h = args_4_3
if __name__ == "__main__":
pool = mp.Pool(4)
#results = pool.starmap(run_enhanced_fp_mis,args_p)
#results = pool.starmap(run_enhanced_fn_mis,args_p)
results = pool.starmap(run_hierarchical_fp_mis,args_h)
#results = pool.starmap(run_hierarchical_fn_mis,args_h)
pool.close()