-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathparse_sdf_utils_test.py
604 lines (554 loc) · 28.2 KB
/
parse_sdf_utils_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for parse_sdf_utils."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tempfile
from absl.testing import absltest
import feature_map_constants as fmap_constants
import feature_utils
import mass_spec_constants as ms_constants
import parse_sdf_utils
import test_utils
import numpy as np
from rdkit import Chem
import six
import tensorflow as tf
class ParseSdfUtilsTest(tf.test.TestCase, absltest.TestCase):
def setUp(self):
super(ParseSdfUtilsTest, self).setUp()
self.test_data_directory = test_utils.test_dir('testdata/')
self.test_file_long = os.path.join(self.test_data_directory,
'test_14_mend.sdf')
self.test_file_short = os.path.join(self.test_data_directory,
'test_2_mend.sdf')
self.temp_dir = tempfile.mkdtemp(dir=absltest.get_default_test_tmpdir())
# Expected result for list of molecule dicts
self.expected_mol_dicts = [{
fmap_constants.NAME: 'Methane, diazo-',
fmap_constants.INCHIKEY: 'YXHKONLOYHBTNS-UHFFFAOYSA-N',
fmap_constants.MOLECULAR_FORMULA: 'CH2N2',
fmap_constants.SMILES: 'C=[N+]=[N-]',
'parsed_smiles': [28, 18, 81, 51, 4, 83, 18, 81, 51, 5, 83],
fmap_constants.SMILES_TOKEN_LIST_LENGTH: 11
}, {
fmap_constants.NAME: (
'(4-(4-Chlorphenyl)-3-morpholino-pyrrol-2-yl)-butenedioic acid,'
' dimethyl ester'),
fmap_constants.INCHIKEY:
'PNYUDNYAXSEACV-RVDMUPIBSA-N',
fmap_constants.MOLECULAR_FORMULA:
'C20H21ClN2O5',
fmap_constants.SMILES:
'COC(=O)/C=C(/C(=O)OC)c1[nH]cc(-c2ccc(Cl)cc2)c1N1CCOCC1',
'parsed_smiles': [
28, 55, 28, 2, 18, 55, 3, 7, 28, 18, 28, 2, 7, 28, 2, 18, 55, 3, 55,
28, 3, 84, 9, 81, 85, 40, 83, 84, 84, 2, 5, 84, 10, 84, 84, 84, 2,
31, 3, 84, 84, 10, 3, 84, 9, 51, 9, 28, 28, 55, 28, 28, 9
],
fmap_constants.SMILES_TOKEN_LIST_LENGTH:
53,
}]
for mol_dict in self.expected_mol_dicts:
token_arr = mol_dict['parsed_smiles']
sequence_length = mol_dict[
fmap_constants.SMILES_TOKEN_LIST_LENGTH]
mol_dict['parsed_smiles'] = np.pad(
token_arr, (0, ms_constants.MAX_TOKEN_LIST_LENGTH - sequence_length),
'constant')
mol_weights = [42.0217981, 404.1139]
atom_weights_list = [[12.011, 14.007, 14.007], [
12.011, 15.999, 12.011, 15.999, 12.011, 12.011, 12.011, 15.999, 15.999,
12.011, 12.011, 14.007, 12.011, 12.011, 12.011, 12.011, 12.011, 12.011,
35.453, 12.011, 12.011, 12.011, 14.007, 12.011, 12.011, 15.999, 12.011,
12.011
]]
atom_ids_list = [[6, 7, 7], [
6, 8, 6, 8, 6, 6, 6, 8, 8, 6, 6, 7, 6, 6, 6, 6, 6, 6, 17, 6, 6, 6, 7, 6,
6, 8, 6, 6
]]
adjacency_matrix_list = [
np.array(
[
0., 2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2., 0.,
2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.
],
dtype='int32'),
np.array(
[
0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 2.,
1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 2., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2., 0., 1., 0., 0., 0.,
1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 2., 1., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 1., 0., 0., 0., 0., 0., 4., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 4., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 4., 0., 4., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 4., 0., 4., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 4., 0., 1., 0., 0., 0., 0., 0., 0., 4., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 1., 0., 4., 0., 0., 0., 0., 4., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
4., 0., 4., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 4.,
0., 4., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 4., 0.,
1., 4., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 4., 0., 0., 4., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 4., 0., 0., 0., 0., 4., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
4., 0., 0., 4., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 1.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0.
],
dtype='int32')
]
mass_spec_peak_locs = [[22, 23, 24, 25, 26, 27, 28, 30, 31, 32], [
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50,
51
]]
mass_spec_peak_intensities = [[
110, 220, 999, 25, 12, 58, 179, 22, 110, 425
], [
12, 7, 28, 999, 57, 302, 975, 8, 53, 176, 99, 122, 117, 155, 9, 7, 6,
28, 59
]]
# Special hparams so that expected arrays can be smaller.
self.hparams = tf.contrib.training.HParams(
intensity_power=1.0,
max_atoms=30,
max_mass_spec_peak_loc=60,
eval_batch_size=len(self.expected_mol_dicts))
for i in range(len(self.expected_mol_dicts)):
self.expected_mol_dicts[i][
fmap_constants.MOLECULE_WEIGHT] = mol_weights[i]
self.expected_mol_dicts[i][
fmap_constants.ATOM_WEIGHTS] = np.pad(
np.array(atom_weights_list[i]),
(0, self.hparams.max_atoms - len(atom_weights_list[i])),
'constant')
self.expected_mol_dicts[i][fmap_constants.ATOM_IDS] = np.pad(
np.array(atom_ids_list[i]),
(0, self.hparams.max_atoms - len(atom_ids_list[i])), 'constant')
self.expected_mol_dicts[i][fmap_constants.ADJACENCY_MATRIX] = (
adjacency_matrix_list[i])
self.expected_mol_dicts[i][fmap_constants.DENSE_MASS_SPEC] = (
feature_utils.make_dense_mass_spectra(
mass_spec_peak_locs[i], mass_spec_peak_intensities[i],
self.hparams.max_mass_spec_peak_loc))
def tearDown(self):
tf.io.gfile.rmtree(self.temp_dir)
super(ParseSdfUtilsTest, self).tearDown()
def encode(self, value):
"""Wrapper function for encoding strings in python 3."""
return test_utils.encode(value, six.PY3)
def test_get_sdf_to_mol(self):
"""Check the contents of the molecules parsed by rdkit.
"""
mol_output = parse_sdf_utils.get_sdf_to_mol(
self.test_file_long, max_atoms=self.hparams.max_atoms)
self.assertLen(mol_output, 12)
self.assertIsInstance(mol_output[0], Chem.rdchem.Mol)
self.assertIsInstance(Chem.MolToSmiles(mol_output[0]), str)
self.assertEqual(
Chem.MolToSmiles(mol_output[0], isomericSmiles=True), '[H][H]')
self.assertTrue(mol_output[0].HasProp(ms_constants.SDF_TAG_MASS_SPEC_PEAKS))
def test_find_largest_number_of_atoms_and_largest_peak(self):
"""Test finding largest number of atoms and largest mass/charge ratio."""
mol_output = parse_sdf_utils.get_sdf_to_mol(self.test_file_long)
found_max_atoms, found_max_atom_num, found_max_peak_loc = (
parse_sdf_utils.find_largest_number_of_atoms_atomic_number_and_ms_peak(
mol_output))
self.assertEqual(found_max_atoms, 28)
self.assertEqual(found_max_atom_num, 35)
self.assertEqual(found_max_peak_loc, 77)
def test_filter_mol_list_by_prop(self):
"""Test filtering rdkit.Mol list by contents of tags."""
mol_list = parse_sdf_utils.get_sdf_to_mol(self.test_file_long)
filtered_mol_list = parse_sdf_utils.filter_mol_list_by_prop(
mol_list, 'CONTRIBUTOR', 'Moscow', wanted=True)
self.assertLen(filtered_mol_list, 9)
def test_find_inchikey_duplicates(self):
"""Test finding duplicate inchi keys in list of molecules."""
mol_list = parse_sdf_utils.get_sdf_to_mol(self.test_file_long)
dup_dict = parse_sdf_utils.find_inchikey_duplicates(mol_list)
self.assertLen(dup_dict, 1)
def test_all_circular_fingerprints_to_dict(self):
"""Test construction of fingerprints."""
# Test on tubocurarine chloride, which has a lot of bit collisions in its fp
test_smiles = ('Oc7ccc1cc7Oc5cc6[C@H](Cc4ccc(Oc2c3[C@@H](C1)[N+](C)(C)'
'CCc3cc(OC)c2O)cc4)[N+](C)(C)CCc6cc5OC')
test_mol = Chem.MolFromSmiles(test_smiles)
def make_fp_key(fp_type, fp_len, rad):
return ms_constants.CircularFingerprintKey(fp_type, fp_len, rad)
expected_fp_sums = {
make_fp_key(fmap_constants.CIRCULAR_FP_BASENAME, 1024, 2):
59.,
make_fp_key(fmap_constants.COUNTING_CIRCULAR_FP_BASENAME,
1024, 2):
130.,
make_fp_key(fmap_constants.CIRCULAR_FP_BASENAME, 1024, 4):
117.,
make_fp_key(fmap_constants.COUNTING_CIRCULAR_FP_BASENAME,
1024, 4):
194.,
make_fp_key(fmap_constants.CIRCULAR_FP_BASENAME, 1024, 6):
159.,
make_fp_key(fmap_constants.COUNTING_CIRCULAR_FP_BASENAME,
1024, 6):
238.,
make_fp_key(fmap_constants.CIRCULAR_FP_BASENAME, 2048, 2):
60.,
make_fp_key(fmap_constants.COUNTING_CIRCULAR_FP_BASENAME,
2048, 2):
130.,
make_fp_key(fmap_constants.CIRCULAR_FP_BASENAME, 2048, 4):
120.,
make_fp_key(fmap_constants.COUNTING_CIRCULAR_FP_BASENAME,
2048, 4):
194.,
make_fp_key(fmap_constants.CIRCULAR_FP_BASENAME, 2048, 6):
164.,
make_fp_key(fmap_constants.COUNTING_CIRCULAR_FP_BASENAME,
2048, 6):
238.,
make_fp_key(fmap_constants.CIRCULAR_FP_BASENAME, 4096, 2):
60.,
make_fp_key(fmap_constants.COUNTING_CIRCULAR_FP_BASENAME,
4096, 2):
130.,
make_fp_key(fmap_constants.CIRCULAR_FP_BASENAME, 4096, 4):
121.,
make_fp_key(fmap_constants.COUNTING_CIRCULAR_FP_BASENAME,
4096, 4):
194.,
make_fp_key(fmap_constants.CIRCULAR_FP_BASENAME, 4096, 6):
165.,
make_fp_key(fmap_constants.COUNTING_CIRCULAR_FP_BASENAME,
4096, 6):
238.,
}
for fp_len in [1024, 2048, 4096]:
for rad in [2, 4, 6]:
for fp_type in fmap_constants.FP_TYPE_LIST:
fp_key = ms_constants.CircularFingerprintKey(fp_type, fp_len, rad)
fp = feature_utils.make_circular_fingerprint(test_mol, fp_key)
self.assertEqual(sum(fp), expected_fp_sums[fp_key])
def test_make_mol_dict(self):
"""Test generation of molecule dictionaries."""
mols = parse_sdf_utils.get_sdf_to_mol(self.test_file_short)
mol_dicts = [
parse_sdf_utils.make_mol_dict(mol, self.hparams.max_atoms,
self.hparams.max_mass_spec_peak_loc)
for mol in mols
]
for i in range(len(self.expected_mol_dicts)):
mol_dict_key_names = [
fmap_constants.NAME, fmap_constants.INCHIKEY,
fmap_constants.SMILES, fmap_constants.MOLECULAR_FORMULA
]
for kwarg in mol_dict_key_names:
self.assertEqual(self.expected_mol_dicts[i][kwarg], mol_dicts[i][kwarg])
self.assertAlmostEqual(
self.expected_mol_dicts[i][fmap_constants.MOLECULE_WEIGHT],
mol_dicts[i][fmap_constants.MOLECULE_WEIGHT])
self.assertSequenceAlmostEqual(
self.expected_mol_dicts[i][fmap_constants.ATOM_WEIGHTS],
mol_dicts[i][fmap_constants.ATOM_WEIGHTS])
self.assertSequenceAlmostEqual(
self.expected_mol_dicts[i][fmap_constants.ADJACENCY_MATRIX],
mol_dicts[i][fmap_constants.ADJACENCY_MATRIX])
self.assertSequenceAlmostEqual(
self.expected_mol_dicts[i][fmap_constants.DENSE_MASS_SPEC],
mol_dicts[i][fmap_constants.DENSE_MASS_SPEC])
def _validate_info_file(self, mol_list, fpath):
with open(fpath + '.info') as f:
lines = f.readlines()
self.assertLen(lines, 1)
self.assertLen(lines[0], len(mol_list))
def test_dict_tfexample(self):
"""Check if the contents of tf.Records is the same as input molecule info.
Writes tf.example as tf.record to disk, then reads from disk.
"""
mol_list = parse_sdf_utils.get_sdf_to_mol(self.test_file_short)
fd, fpath = tempfile.mkstemp(dir=self.temp_dir)
os.close(fd)
parse_sdf_utils.write_dicts_to_example(mol_list, fpath,
self.hparams.max_atoms,
self.hparams.max_mass_spec_peak_loc)
parse_sdf_utils.write_info_file(mol_list, fpath)
self._validate_info_file(mol_list, fpath)
dataset = parse_sdf_utils.get_dataset_from_record(
[fpath], self.hparams, mode=tf.estimator.ModeKeys.EVAL)
feature_names = [
fmap_constants.ATOM_WEIGHTS,
fmap_constants.MOLECULE_WEIGHT,
fmap_constants.DENSE_MASS_SPEC,
fmap_constants.INCHIKEY, fmap_constants.NAME,
fmap_constants.MOLECULAR_FORMULA,
fmap_constants.ADJACENCY_MATRIX,
fmap_constants.ATOM_IDS, fmap_constants.SMILES
]
label_names = [fmap_constants.INCHIKEY]
features, _ = parse_sdf_utils.make_features_and_labels(
dataset, feature_names, label_names, mode=tf.estimator.ModeKeys.EVAL)
with tf.Session() as sess:
feature_values = sess.run(features)
# Check that the dataset was consumed
try:
sess.run(features)
raise ValueError('Dataset parsing using batch size of length of the'
'dataset resulted in more than one batch.')
except tf.errors.OutOfRangeError: # expected behavior
pass
for i in range(len(self.expected_mol_dicts)):
self.assertAlmostEqual(
feature_values[fmap_constants.MOLECULE_WEIGHT][i],
self.expected_mol_dicts[i][fmap_constants.MOLECULE_WEIGHT])
self.assertSequenceAlmostEqual(
feature_values[fmap_constants.ADJACENCY_MATRIX][i]
.flatten(),
self.expected_mol_dicts[i][fmap_constants.ADJACENCY_MATRIX],
delta=0.0001)
self.assertSequenceAlmostEqual(
feature_values[fmap_constants.DENSE_MASS_SPEC][i],
self.expected_mol_dicts[i][fmap_constants.DENSE_MASS_SPEC],
delta=0.0001)
self.assertSequenceAlmostEqual(
feature_values[fmap_constants.ATOM_WEIGHTS][i],
self.expected_mol_dicts[i][fmap_constants.ATOM_WEIGHTS],
delta=0.0001)
self.assertSequenceAlmostEqual(
feature_values[fmap_constants.ATOM_IDS][i],
self.expected_mol_dicts[i][fmap_constants.ATOM_IDS],
delta=0.0001)
self.assertEqual(
feature_values[fmap_constants.NAME][i],
self.encode(self.expected_mol_dicts[i][fmap_constants.NAME]))
self.assertEqual(
feature_values[fmap_constants.INCHIKEY][i],
self.encode(
self.expected_mol_dicts[i][fmap_constants.INCHIKEY]))
self.assertEqual(
feature_values[fmap_constants.MOLECULAR_FORMULA][i],
self.encode(
self.expected_mol_dicts[i][fmap_constants.MOLECULAR_FORMULA]))
self.assertAllEqual(feature_values[fmap_constants.SMILES][i],
self.expected_mol_dicts[i]['parsed_smiles'])
self.assertAllEqual(
feature_values[fmap_constants.SMILES_TOKEN_LIST_LENGTH][i],
self.expected_mol_dicts[i][fmap_constants.SMILES_TOKEN_LIST_LENGTH])
def test_save_true_spectra_array(self):
"""Checks contents of true spectra array written by write_dicts_to_example.
"""
mol_list = parse_sdf_utils.get_sdf_to_mol(self.test_file_short)
fpath = self.temp_dir
records_path_name = os.path.join(fpath, 'test_record.gz')
test_array_filename = 'true_spectra_array.npy'
array_path_name = os.path.join(fpath, test_array_filename)
parse_sdf_utils.write_dicts_to_example(
mol_list,
records_path_name,
self.hparams.max_atoms,
self.hparams.max_mass_spec_peak_loc,
true_library_array_path_name=array_path_name)
parse_sdf_utils.write_info_file(mol_list, records_path_name)
parse_sdf_utils.validate_spectra_array_contents(
records_path_name, self.hparams, array_path_name)
def test_record_contents(self):
"""Test the contents of the stored record file to ensure features match."""
mol_list = parse_sdf_utils.get_sdf_to_mol(self.test_file_long)
mol_dicts = [parse_sdf_utils.make_mol_dict(mol) for mol in mol_list]
parsed_smiles_tokens = [
feature_utils.tokenize_smiles(
np.array([mol_dict[fmap_constants.SMILES]]))
for mol_dict in mol_dicts
]
token_lengths = [
np.shape(token_arr)[0] for token_arr in parsed_smiles_tokens
]
parsed_smiles_tokens = [
np.pad(token_arr,
(0, ms_constants.MAX_TOKEN_LIST_LENGTH - token_length),
'constant')
for token_arr, token_length in zip(parsed_smiles_tokens, token_lengths)
]
hparams_main = tf.contrib.training.HParams(
max_atoms=ms_constants.MAX_ATOMS,
max_mass_spec_peak_loc=ms_constants.MAX_PEAK_LOC,
eval_batch_size=len(mol_list),
intensity_power=1.0)
dataset = parse_sdf_utils.get_dataset_from_record(
[os.path.join(self.test_data_directory, 'test_14_record.gz')],
hparams_main,
mode=tf.estimator.ModeKeys.EVAL)
feature_names = [
fmap_constants.ATOM_WEIGHTS,
fmap_constants.MOLECULE_WEIGHT,
fmap_constants.DENSE_MASS_SPEC,
fmap_constants.INCHIKEY, fmap_constants.NAME,
fmap_constants.MOLECULAR_FORMULA,
fmap_constants.ADJACENCY_MATRIX,
fmap_constants.ATOM_IDS, fmap_constants.SMILES
]
for fp_len in ms_constants.NUM_CIRCULAR_FP_BITS_LIST:
for rad in ms_constants.CIRCULAR_FP_RADII_LIST:
for fp_type in fmap_constants.FP_TYPE_LIST:
feature_names.append(
str(ms_constants.CircularFingerprintKey(fp_type, fp_len, rad)))
label_names = [fmap_constants.INCHIKEY]
features, _ = parse_sdf_utils.make_features_and_labels(
dataset, feature_names, label_names, mode=tf.estimator.ModeKeys.EVAL)
with tf.Session() as sess:
feature_values = sess.run(features)
# Check that the dataset was consumed
try:
sess.run(features)
raise ValueError('Dataset parsing using batch size of length of the'
' dataset resulted in more than one batch.')
except tf.errors.OutOfRangeError: # expected behavior
pass
for i in range(len(mol_list)):
self.assertAlmostEqual(
feature_values[fmap_constants.MOLECULE_WEIGHT][i],
mol_dicts[i][fmap_constants.MOLECULE_WEIGHT])
self.assertSequenceAlmostEqual(
feature_values[fmap_constants.ADJACENCY_MATRIX][i]
.flatten(),
mol_dicts[i][fmap_constants.ADJACENCY_MATRIX],
delta=0.0001)
self.assertEqual(feature_values[fmap_constants.NAME][i],
self.encode(mol_dicts[i][fmap_constants.NAME]))
self.assertEqual(feature_values[fmap_constants.INCHIKEY][i],
self.encode(mol_dicts[i][fmap_constants.INCHIKEY]))
self.assertEqual(
feature_values[fmap_constants.MOLECULAR_FORMULA][i],
self.encode(mol_dicts[i][fmap_constants.MOLECULAR_FORMULA]))
self.assertSequenceAlmostEqual(
feature_values[fmap_constants.DENSE_MASS_SPEC][i],
mol_dicts[i][fmap_constants.DENSE_MASS_SPEC],
delta=0.0001)
self.assertSequenceAlmostEqual(
feature_values[fmap_constants.ATOM_WEIGHTS][i],
mol_dicts[i][fmap_constants.ATOM_WEIGHTS],
delta=0.0001)
self.assertSequenceAlmostEqual(
feature_values[fmap_constants.ATOM_IDS][i],
mol_dicts[i][fmap_constants.ATOM_IDS],
delta=0.0001)
self.assertAllEqual(feature_values[fmap_constants.SMILES][i],
parsed_smiles_tokens[i])
self.assertAllEqual(
feature_values[fmap_constants.SMILES_TOKEN_LIST_LENGTH][i],
token_lengths[i])
for fp_len in ms_constants.NUM_CIRCULAR_FP_BITS_LIST:
for rad in ms_constants.CIRCULAR_FP_RADII_LIST:
for fp_type in fmap_constants.FP_TYPE_LIST:
fp_key = ms_constants.CircularFingerprintKey(fp_type, fp_len, rad)
self.assertSequenceAlmostEqual(
feature_values[str(fp_key)][i],
mol_dicts[i][fp_key],
delta=0.0001)
if __name__ == '__main__':
tf.test.main()