This repository has been archived by the owner on Jan 20, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathload_config.py
193 lines (158 loc) · 6.92 KB
/
load_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from easydict import EasyDict as edict
import yaml
import copy
import math
from training.dataset import get_dataset_size
config = edict()
with open('./configs/mne_training.yml', 'r') as stream:
opts = yaml.safe_load(stream)['encoder_training']
opts = edict(opts)
assert opts.noise_predict_from <= opts.noise_predict_until
log2_start = int(math.log2(opts.noise_predict_from))
log2_until = int(math.log2(opts.noise_predict_until))
all_noise_layers = 2 * ((log2_until - log2_start) + 1)
assert opts.num_masked_layer <= all_noise_layers
config.loss_kwargs = edict(class_name='training.loss.MixEncoderDiscriminatorLoss',
lambda_mse=opts.lambda_mse,
lambda_lpips=opts.lambda_lpips,
lambda_e_feat=opts.lambda_e_feat,
lambda_adv_loss=opts.lambda_adv_loss,
reconstruction_loss=opts.reconstruction_loss,
use_w=opts.use_w,
lambda_w=opts.lambda_w,
G_input_mode=opts.input_mode,
cooldown_w=opts.cooldown_w,
lambda_kl=opts.lambda_kl,
lambda_noise=opts.lambda_noise,
mask_ratio=opts.mask_ratio,
mask_size=opts.mask_size,
num_masked_layer=opts.num_masked_layer,
masked_noise_mode=opts.masked_noise_mode,
masked_noise_loss=opts.masked_noise_loss,
masked_lpips_loss=opts.masked_lpips_loss,
mask_height_divide=opts.mask_height_divide,
)
# normalize_layer_noise=opts.normalize_layer_noise,
# use_same_mask=opts.use_same_mask,
config.masked_lpips_loss = opts.masked_lpips_loss
config.loss_kwargs.blur_init_sigma = 10 # Blur the images seen by the discriminator.
config.loss_kwargs.blur_fade_kimg = opts.batch * 200 / 32 # Fade out the blur during the first N kimg.
config.loss_kwargs.gan_loss_mode = opts.loss_mode
config.loss_kwargs.r1_gamma = opts.gamma
config.loss_kwargs.enable_blur = opts.blur_enable
config.lr_schedule_kwargs = edict(lr=opts.lr, lr_decay_iter_start=opts.lr_decay_iter_start,
lr_decay_iter_end=opts.lr_decay_iter_end,
lr_decay=opts.lr_decay)
# Data loader configurations
config.data_loader_kwargs = edict(pin_memory=False, prefetch_factor=2) # (pin_memory=True, prefetch_factor=2)
# Generator information
config.G_kwargs = edict(class_name=None, z_dim=opts.w_out_dim, w_dim=opts.w_out_dim, mapping_kwargs=edict())
config.G_kwargs.class_name = 'training.networks_stylegan2.Generator'
config.G_kwargs.fused_modconv_default = 'inference_only'
config.G_kwargs.channel_base = 32768
config.G_kwargs.channel_max = 512
config.G_kwargs.mapping_kwargs.num_layers = 8
config.G_pkl = opts.pkl_dir
config.G_kwargs.input_mode = opts.input_mode # 'const' or 'random'
config.cooldown_w = opts.cooldown_w
config.label_dim = opts.label_dim
# Encoder configs
config.encoder_kwargs = edict(class_name='training.encoder_model.FPNEncoder')
config.encoder_kwargs.style_layers = [opts.style_layers_coarse, opts.style_layers_medium, opts.style_layers_fine]
config.encoder_kwargs.fpn_feature_dim = opts.fpn_feature_dim
config.encoder_kwargs.out_dim = opts.w_out_dim
config.encoder_kwargs.noise_predict_from = opts.noise_predict_from
config.encoder_kwargs.noise_predict_until = opts.noise_predict_until
config.encoder_kwargs.input_mode = opts.input_mode
config.enc_D_kwargs = edict(class_name='training.discriminator_model.MultiscaleDiscriminator')
# Optimizer configs
if opts.optimizer == 'adam':
config.enc_opt_kwargs = edict(class_name='torch.optim.Adam', lr=opts.lr)
else:
config.enc_opt_kwargs = edict(class_name='training.ranger.Ranger', lr=opts.lr)
config.enc_D_opt_kwargs = edict(class_name='torch.optim.Adam', betas=[opts.beta_first, opts.beta_sec], eps=1e-8, lr=opts.dlr)
config.ema_enable = opts.ema_enable
config.ema_kimg = opts.ema_kimg
config.ema_rampup = opts.ema_rampup
config.use_w = opts.use_w
dataset_name = opts.dataset_name
# Dataset Size
config.data_pth = opts.data
all_data = get_dataset_size(opts.data)
val_size = opts.val_size
train_size = all_data - val_size
# Training set
config.training_set_kwargs = edict(
path=opts.data,
resolution=opts.resolution,
img_ratio=float(opts.img_ratio),
cropping_mode=opts.cropping_dataset,
use_labels = opts.cond,
xflip = opts.mirror,
max_size = train_size
)
# Validation set
config.val_set_kwargs = copy.deepcopy(config.training_set_kwargs)
config.val_set_kwargs.max_size = val_size
config.val_set_kwargs.inverse_order = True
# Fake image set
if opts.use_w:
config.fake_set_kwargs = edict(
path=opts.data_fake,
resolution=opts.resolution,
img_ratio=float(opts.img_ratio),
cropping_mode=opts.cropping_dataset,
use_w=opts.use_w,
use_labels=opts.cond,
xflip=opts.mirror
)
config.encoder_kwargs.resolution = config.training_set_kwargs.resolution
# Hyperparameters & settings.
config.num_gpus = opts.gpus
config.batch_size = opts.batch
config.val_batch_size = opts.batch_val
config.batch_gpu = opts.subbatch or opts.batch // opts.gpus
config.total_kimg = opts.kimg
config.kimg_per_tick = opts.tick
config.image_snapshot_ticks = config.network_snapshot_ticks = opts.snap
config.random_seed = config.training_set_kwargs.random_seed = opts.seed
config.data_loader_kwargs.num_workers = opts.workers
# Sanity checks.
if config.batch_size % config.num_gpus != 0:
raise ValueError('--batch must be a multiple of --gpus')
if config.batch_size % (config.num_gpus * config.batch_gpu) != 0:
raise ValueError('--batch must be a multiple of --gpus times --batch-gpu')
# Resume.
if opts.resume is not None:
config.resume_pkl = opts.resume
# config.ada_kimg = 100 # Make ADA react faster at the beginning.
# Augmentation.
if opts.aug != 'noaug':
config.augment_kwargs = edict(class_name='training.augment.AugmentPipe', xflip=1, rotate90=1, xint=1, scale=1, rotate=1,
aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1)
if opts.aug == 'ada':
config.ada_target = opts.target
config.ada_max_p = opts.ada_max_p
config.ada_interval = opts.ada_interval
config.ada_kimg = opts.ada_kimg
config.augment_p = 0.0
if opts.aug == 'fixed':
config.augment_p = opts.p
else:
config.augment_kwargs = None
if opts.nobench:
config.cudnn_benchmark = False
else:
config.cudnn_benchmark = True
# Description string.
if opts.dataset_name is not None:
dataset_name = opts.dataset_name
desc = f'encoder-{opts.generator:s}-{dataset_name:s}'
if opts.resume is not None:
desc += '-resume'
config.desc = desc
config.outdir = opts.outdir
# Training setups
config.D_reg_interval = opts.D_reg_interval # freq. for lazy regularization
config.save_model_ticks = opts.save_model_ticks
config.image_snapshot_ticks = opts.image_snapshot_ticks