-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_model.py
184 lines (155 loc) · 6.26 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
"""
- Download training dataset from AWS S3.
- Prepare data and train model.
- Persist model to AWS S3.
"""
import sys
from typing import Any, Dict, List, NamedTuple, Tuple
from bodywork_pipeline_utils import aws, logging
from bodywork_pipeline_utils.aws import Dataset
from numpy import array
from pandas import DataFrame
from sklearn.base import BaseEstimator
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.metrics import mean_absolute_error, r2_score
from sklearn.tree import DecisionTreeRegressor
PRODUCT_CODE_MAP = {"SKU001": 0, "SKU002": 1, "SKU003": 2, "SKU004": 3, "SKU005": 4}
HYPERPARAM_GRID = {
"random_state": [42],
"criterion": ["squared_error", "absolute_error"],
"max_depth": [2, 4, 6, 8, 10, None],
"min_samples_split": [2, 4, 6, 8, 10],
"min_samples_leaf": [2, 4, 6, 8, 10],
}
log = logging.configure_logger()
class FeatureAndLabels(NamedTuple):
"""Container for features and labels split by test and train sets."""
X_train: DataFrame
X_test: DataFrame
y_train: DataFrame
y_test: DataFrame
class TaskMetrics(NamedTuple):
"""Container for the task's performance metrics."""
r_squared: float
mean_absolute_error: float
def main(
s3_bucket: str,
metric_error_threshold: float,
metric_warning_threshold: float,
hyperparam_grid: Dict[str, Any],
) -> None:
"""Main training job."""
log.info("Starting train-model stage.")
dataset = aws.get_latest_csv_dataset_from_s3(s3_bucket, "datasets")
log.info(f"Retrieved dataset from s3://{s3_bucket}/{dataset.key}")
feature_and_labels = prepare_data(dataset.data)
model, metrics = train_model(feature_and_labels, hyperparam_grid)
validate_trained_model_logic(model, feature_and_labels)
log.info(
f"Trained model: r-squared={metrics.r_squared:.3f}, "
f"MAE={metrics.mean_absolute_error:.3f}"
)
if metrics.r_squared >= metric_error_threshold:
if metrics.r_squared >= metric_warning_threshold:
log.warning("Metrics breached warning threshold - check for drift.")
s3_location = persist_model(s3_bucket, model, dataset, metrics)
log.info(f"Model serialised and persisted to s3://{s3_location}")
else:
msg = (
f"r-squared metric ({{metrics.r_squared:.3f}}) is below deployment "
f"threshold {metric_error_threshold}"
)
raise RuntimeError(msg)
def prepare_data(data: DataFrame) -> FeatureAndLabels:
"""Split the data into features and labels for training and testing."""
X = data.drop("hours_to_dispatch", axis=1)
y = data["hours_to_dispatch"]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, stratify=data["product_code"].values, random_state=42
)
return FeatureAndLabels(X_train, X_test, y_train, y_test)
def train_model(
data: FeatureAndLabels, hyperparam_grid: Dict[str, Any]
) -> Tuple[BaseEstimator, TaskMetrics]:
"""Train a model and compute performance metrics."""
grid_search = GridSearchCV(
estimator=DecisionTreeRegressor(),
param_grid=hyperparam_grid,
scoring="r2",
cv=5,
refit=True,
)
grid_search.fit(preprocess(data.X_train), data.y_train)
best_model = grid_search.best_estimator_
y_test_pred = best_model.predict(preprocess(data.X_test))
performance_metrics = TaskMetrics(
r2_score(data.y_test, y_test_pred),
mean_absolute_error(data.y_test, y_test_pred),
)
return (best_model, performance_metrics)
def validate_trained_model_logic(model: BaseEstimator, data: FeatureAndLabels) -> None:
"""Verify that a trained model passes basic logical expectations."""
issues_detected: List[str] = []
orders_placed_sensitivity_checks = [
model.predict(array([[100, product], [150, product]])).tolist()
for product in range(len(PRODUCT_CODE_MAP))
]
if not all(e[0] < e[1] for e in orders_placed_sensitivity_checks):
issues_detected.append(
"hours_to_dispatch predictions do not increase with orders_placed"
)
test_set_predictions = model.predict(preprocess(data.X_test)).reshape(-1)
if len(test_set_predictions[test_set_predictions < 0]) > 0:
issues_detected.append(
"negative hours_to_dispatch predictions found for test set"
)
if len(test_set_predictions[test_set_predictions > data.y_test.max() * 1.25]) > 0:
issues_detected.append(
"outlier hours_to_dispatch predictions found for test set"
)
if issues_detected:
msg = "Trained model failed verification: " + ", ".join(issues_detected) + "."
raise RuntimeError(msg)
def preprocess(df: DataFrame) -> DataFrame:
"""Create features for training model."""
processed = df.copy()
processed["product_code"] = df["product_code"].apply(lambda e: PRODUCT_CODE_MAP[e])
return processed.values
def persist_model(
bucket: str, model: BaseEstimator, dataset: Dataset, metrics: TaskMetrics
) -> str:
"""Persist the model and metadata to S3."""
metadata = {
"r_squared": metrics.r_squared,
"mean_absolute_error": metrics.mean_absolute_error,
}
wrapped_model = aws.Model("time-to-dispatch", model, dataset, metadata)
s3_location = wrapped_model.put_model_to_s3(bucket, "models")
return s3_location
if __name__ == "__main__":
try:
args = sys.argv
s3_bucket = args[1]
r2_metric_error_threshold = float(args[2])
if r2_metric_error_threshold <= 0 or r2_metric_error_threshold > 1:
raise ValueError()
r2_metric_warning_threshold = float(args[3])
if r2_metric_warning_threshold <= 0 or r2_metric_warning_threshold > 1:
raise ValueError()
except (ValueError, IndexError):
log.error(
"Invalid arguments passed to train_model.py. "
"Expected S3_BUCKET R_SQUARED_ERROR_THRESHOLD R_SQUARED_WARNING_THRESHOLD, "
"where all thresholds must be in the range [0, 1]."
)
sys.exit(1)
try:
main(
s3_bucket,
r2_metric_error_threshold,
r2_metric_warning_threshold,
HYPERPARAM_GRID,
)
except Exception as e:
log.error(f"Error encountered when training model - {e}")
sys.exit(1)