-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfunctions.py
131 lines (99 loc) · 4.17 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os, torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import operator
from dataloader import feature_extractor
from tqdm import tqdm
class precision_and_recall(object):
def __init__(self, args):
# parameters
self.args = args
# self.data_dir = args.data_dir
self.result_dir = args.result_dir
self.batch_size = args.batch_size
self.cpu = args.cpu
self.data_size = args.data_size
self.k = 3
def run(self):
# load data using vgg16
extractor = feature_extractor(self.args)
generated_features, real_features, _ = extractor.extract()
# print(generated_features)
# equal number of samples
data_num = min(len(generated_features), len(real_features))
print(f'data num: {data_num}')
if data_num <= 0:
print("there is no data")
return
generated_features = generated_features[:data_num]
real_features = real_features[:data_num]
# get precision and recall
precision = self.manifold_estimate(real_features, generated_features, self.k)
recall = self.manifold_estimate(generated_features, real_features, self.k)
print(precision)
print(recall)
def manifold_estimate(self, A_features, B_features, k):
KNN_list_in_A = {}
for A in tqdm(A_features, ncols=80):
pairwise_distances = np.zeros(shape=(len(A_features)))
for i, A_prime in enumerate(A_features):
d = torch.norm((A-A_prime), 2)
pairwise_distances[i] = d
v = np.partition(pairwise_distances, k)[k]
KNN_list_in_A[A] = v
n = 0
for B in tqdm(B_features, ncols=80):
for A_prime in A_features:
d = torch.norm((B-A_prime), 2)
if d <= KNN_list_in_A[A_prime]:
n+=1
break
return n/len(B_features)
class realism(object):
def __init__(self, args):
# parameters
self.args = args
# self.data_dir = args.data_dir
self.result_dir = args.result_dir
self.batch_size = args.batch_size
self.cpu = args.cpu
self.k = 3
def run(self):
# load data using vgg16
extractor = feature_extractor(self.args)
generated_features, real_features, generated_img_paths = extractor.extract()
# equal number of samples
data_num = min(len(generated_features), len(real_features))
print(f'data num: {data_num}')
if data_num <= 0:
print("there is no data")
return
generated_features = generated_features[:data_num]
real_features = real_features[:data_num]
generated_img_paths = generated_img_paths[:data_num]
KNN_list_in_real = self.calculate_real_NNK(real_features, self.k, data_num)
for i, generated_feature in enumerate(tqdm(generated_features, ncols=80)):
max_value = 0
for real_feature, KNN_radius in KNN_list_in_real:
d = torch.norm((real_feature-generated_feature), 2)
value = KNN_radius/d
if max_value < value:
max_value = value
# print images with specific names
if 'high_realism' in generated_img_paths[i] or 'low_realism' in generated_img_paths[i]:
print(f'{generated_img_paths[i]} realism score: {max_value}')
return
def calculate_real_NNK(self, real_features, k, data_num):
KNN_list_in_real = {}
for real_feature in tqdm(real_features, ncols=80):
pairwise_distances = np.zeros(shape=(len(real_features)))
for i, real_prime in enumerate(real_features):
d = torch.norm((real_feature-real_prime), 2)
pairwise_distances[i] = d
v = np.partition(pairwise_distances, k)[k]
KNN_list_in_real[real_feature] = v
# remove half of larger values
KNN_list_in_real = sorted(KNN_list_in_real.items(), key=operator.itemgetter(1))
KNN_list_in_real = KNN_list_in_real[:int(data_num/2)]
return KNN_list_in_real