-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathlocalGlobal.py
411 lines (358 loc) · 19.7 KB
/
localGlobal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
from typing import Callable, Dict, List, Optional, Tuple, Union
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_
from torch.cuda.amp import autocast
from detectron2.config import configurable
from detectron2.layers import Conv2d, ShapeSpec, get_norm
from detectron2.modeling import META_ARCH_REGISTRY
from models.layers.position_encoding import PositionEmbeddingSine
from models.layers.utils import _get_clones, _get_activation_fn
from .ops.modules import MSDeformAttn
# MSDeformAttn Transformer encoder in deformable detr
class MSDeformAttnTransformerEncoderOnly(nn.Module):
def __init__(self, d_model=256, nhead=8,
num_encoder_layers=6, dim_feedforward=1024, dropout=0.1,
activation="relu",
num_feature_levels=4, enc_n_points=4,
add_local = False,
add_global=False,
local_configs=None,
global_configs=None,
frame_nqueries=None,
):
super().__init__()
self.d_model = d_model
self.nhead = nhead
encoder_layer = MSDeformAttnTransformerEncoderLayer(d_model = d_model,
d_ffn = dim_feedforward,
dropout = dropout,
activation = activation,
n_levels = num_feature_levels,
n_heads = nhead,
n_points = enc_n_points,
add_local = add_local,
add_global = add_global,
local_configs = local_configs,
global_configs = global_configs
)
self.encoder = MSDeformAttnTransformerEncoder(encoder_layer, num_encoder_layers,
d_model=d_model,
frame_nqueries=frame_nqueries)
self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for m in self.modules():
if isinstance(m, MSDeformAttn):
m._reset_parameters()
normal_(self.level_embed)
def get_valid_ratio(self, mask):
_, H, W = mask.shape # b h w
valid_H = torch.sum(~mask[:, :, 0], 1) # b
valid_W = torch.sum(~mask[:, 0, :], 1) # b
valid_ratio_h = valid_H.float() / H
valid_ratio_w = valid_W.float() / W
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) # b 2
return valid_ratio
def forward(self,
srcs=None,
pos_embeds=None,
video_aux_dict=None,
**kwargs):
masks = [torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in srcs]
# prepare input for encoder
src_flatten = []
mask_flatten = []
lvl_pos_embed_flatten = []
spatial_shapes = []
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
bs, c, h, w = src.shape
spatial_shape = (h, w)
spatial_shapes.append(spatial_shape)
src = src.flatten(2).transpose(1, 2)
mask = mask.flatten(1)
pos_embed = pos_embed.flatten(2).transpose(1, 2)
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
lvl_pos_embed_flatten.append(lvl_pos_embed)
src_flatten.append(src)
mask_flatten.append(mask)
src_flatten = torch.cat(src_flatten, 1)
mask_flatten = torch.cat(mask_flatten, 1)
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) # b #scale 2
# encoder
memory, frame_feats, frame_poses = self.encoder(src=src_flatten, # bt hw_sigma c
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
valid_ratios=valid_ratios,
pos=lvl_pos_embed_flatten,
padding_mask=mask_flatten,
video_aux_dict=video_aux_dict)
return memory, spatial_shapes, level_start_index, frame_feats, frame_poses
class MSDeformAttnTransformerEncoderLayer(nn.Module):
def __init__(self,
d_model=256, d_ffn=1024,
dropout=0.1, activation="relu",
n_levels=4, n_heads=8, n_points=4,
add_local=False,
add_global=False,
local_configs=None,
global_configs=None):
super().__init__()
# deform2d
self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
self.add_local = add_local
if self.add_local:
from .neighborhood_qk import NA_qk_Layer
# self
self.local_cnp = NA_qk_Layer(d_model=d_model, configs=local_configs)
self.add_global = add_global
if self.add_global:
from models.layers.decoder_layers import CrossAttentionLayer
# cross
self.frame_query_cross_multiscale = CrossAttentionLayer(d_model=d_model, nhead=8, dropout=0.0,
activation="relu", normalize_before=False)
self.cross_num_heads = 8
self.global_add_attn_mask = global_configs['add_attn_mask'] if 'add_attn_mask' in global_configs else False
# self+ffn
from models.encoder.ops.modules.frame_query_ss2d import FrameQuery_SS2DLayer_hilbert
self.global_hiss = FrameQuery_SS2DLayer_hilbert(global_configs)
self.multiscale_cross_query = CrossAttentionLayer(d_model=d_model, nhead=8, dropout=0.0,
activation="relu", normalize_before=False)
# ffn
self.linear1 = nn.Linear(d_model, d_ffn)
self.activation = _get_activation_fn(activation)
self.dropout2 = nn.Dropout(dropout)
self.linear2 = nn.Linear(d_ffn, d_model)
self.dropout3 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
@staticmethod
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, src):
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
src = src + self.dropout3(src2)
src = self.norm2(src)
return src
@torch.no_grad()
def get_attn_mask(self, frame_query_feats, src, spatial_shapes, level_start_index,):
# nq bt c
# bt hw_sigma c
assert len(spatial_shapes) == 3
frame_query_feats = frame_query_feats.permute(1, 0, 2) # bt nq c
feat = src[:, level_start_index[-1]: (level_start_index[-1] + spatial_shapes[-1][0] * spatial_shapes[-1][1])]
feat = rearrange(feat, 'b (h w) c -> b c h w',h=spatial_shapes[-1][0],w=spatial_shapes[-1][1])
mask = torch.einsum('bnc, bchw -> b n h w',frame_query_feats, feat)
mask_2 = F.interpolate(mask, size=spatial_shapes[0].tolist(), mode='bilinear',align_corners=False)
mask_3 = F.interpolate(mask, size=spatial_shapes[1].tolist(), mode='bilinear', align_corners=False)
attn_mask = torch.cat([mask_2.flatten(2), mask_3.flatten(2), mask.flatten(2)], dim=-1) #bt n hw_sigma
attn_mask = (attn_mask.unsqueeze(1).repeat(1, self.cross_num_heads, 1, 1).flatten(0, 1).sigmoid() < 0.5).bool()
return attn_mask
def forward(self,
src=None, pos=None,
reference_points=None, spatial_shapes=None, level_start_index=None, padding_mask=None,
video_aux_dict=None,
frame_query_feats=None, # nq bt c
frame_query_poses=None):
if self.add_local:
# local_self
src = self.local_cnp(tgt=src,
scale_shapes=spatial_shapes,
level_start_idxs=level_start_index,
nf=video_aux_dict['nf'])
if self.add_global:
if self.global_add_attn_mask:
attn_mask = self.get_attn_mask(frame_query_feats, src, spatial_shapes, level_start_index,) # bthead nq hw
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False # 全masked掉的 全注意, 比如有padding
else:
attn_mask = None
# cross
frame_query_feats = self.frame_query_cross_multiscale(
tgt=frame_query_feats, # nq bt c
memory=src.permute(1, 0, 2), # hw_sigma bt c
memory_mask=attn_mask,
memory_key_padding_mask=None,
pos= pos.permute(1,0,2),
query_pos=frame_query_poses,
)
# self+ffn
frame_query_feats = self.global_hiss(frame_query_feats=frame_query_feats,
frame_query_poses=frame_query_poses,
video_aux_dict=video_aux_dict)
# self
src = self.multiscale_cross_query(
tgt=src.permute(1, 0, 2), # hw_sigma bt c
memory=frame_query_feats, # nq bt c
memory_mask=None,
memory_key_padding_mask=None,
pos= frame_query_poses,
query_pos=pos.permute(1,0,2),
).permute(1, 0, 2)
# self attention
src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, padding_mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
# ffn
src = self.forward_ffn(src)
return src, frame_query_feats
class MSDeformAttnTransformerEncoder(nn.Module):
def __init__(self,
encoder_layer=None,
num_layers=None,
d_model=None, frame_nqueries=None):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.frame_nqueries = frame_nqueries # 10
self.frame_query_feats = nn.Embedding(self.frame_nqueries, d_model)
self.frame_query_poses = nn.Embedding(self.frame_nqueries, d_model)
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
# b #scale 2, valid_w(0-1), valid_h(0-1), 整个feature map有多少是非padding的
# list[h w] #scale
reference_points_list = []
for lvl, (H_, W_) in enumerate(spatial_shapes):
ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device))
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_) # 1 hw / b 1 -> b hw(0-1), y的绝对坐标
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_) # 1 hw / b 1 -> b hw(0-1), x的绝对坐标
ref = torch.stack((ref_x, ref_y), -1) # b hw 2
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1) # b hw_sigma 2, 每个点的相对坐标(0-1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None] # b hw_sigma 1 2 * b 1 #scale 2
return reference_points # b hw_sigma #scale 2
def forward(self,
src, # bt hw_sigma c
spatial_shapes,
level_start_index,
valid_ratios,
pos=None,
padding_mask=None,
video_aux_dict=None):
output = src # bt hw_sigma c
batch_size_nf = output.shape[0]
frame_query_feats = self.frame_query_feats.weight.unsqueeze(1).repeat(1,batch_size_nf, 1)
frame_query_poses = self.frame_query_poses.weight.unsqueeze(1).repeat(1,batch_size_nf,1) # n bt c
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device)
frame_feats = []
for _, layer in enumerate(self.layers):
output, frame_query_feats = layer(src=output,
pos=pos,
reference_points=reference_points,
spatial_shapes=spatial_shapes,
level_start_index=level_start_index,
padding_mask=padding_mask,
video_aux_dict=video_aux_dict,
frame_query_feats=frame_query_feats,
frame_query_poses=frame_query_poses)
frame_feats.append(frame_query_feats)
return output, frame_feats, frame_query_poses
import copy
from einops import rearrange
from models.layers.utils import _get_clones
from models.layers.position_encoding import build_position_encoding
# video multiscale, text_dict
@META_ARCH_REGISTRY.register()
class Video_Deform2D_DividedTemporal_MultiscaleEncoder_localGlobal(nn.Module):
def __init__(
self,
configs,
multiscale_shapes, # {'res2': .temporal_stride, .spatial_stride, .dim}
):
super().__init__()
d_model = configs['d_model']
fpn_norm = configs['fpn_norm'] # fpn的norm
nlayers = configs['nlayers']
# 4, 8, 16, 32
self.multiscale_shapes = dict(sorted(copy.deepcopy(multiscale_shapes).items(), key=lambda x: x[1].spatial_stride))
self.encoded_scales = sorted(configs['encoded_scales'],
key=lambda x:self.multiscale_shapes[x].spatial_stride) # res3, res4, res5
# 4 -> 8 -> 16 -> 32
self.scale_dims = [val.dim for val in multiscale_shapes.values()]
self.video_projs = META_ARCH_REGISTRY.get(configs['video_projs']['name'])(configs=configs['video_projs'],
multiscale_shapes=multiscale_shapes, out_dim=d_model)
self.pos_2d = build_position_encoding(position_embedding_name='2d')
deform_attn = configs['deform_attn']
self.transformer = MSDeformAttnTransformerEncoderOnly(
d_model=d_model,
dropout=deform_attn['dropout'],
nhead=deform_attn['nheads'],
dim_feedforward=deform_attn['dim_feedforward'],
activation=deform_attn['activation'],
num_encoder_layers=nlayers,
num_feature_levels=len(self.encoded_scales),
enc_n_points=deform_attn['enc_n_points'],
add_local = configs['add_local'],
add_global = configs['add_global'],
local_configs = configs['local_configs'],
global_configs = configs['global_configs'],
frame_nqueries=configs['frame_nqueries']
)
min_encode_stride = self.multiscale_shapes[self.encoded_scales[0]].spatial_stride # 8
min_stride = list(self.multiscale_shapes.values())[0].spatial_stride # 4
self.num_fpn_levels = int(np.log2(min_encode_stride) - np.log2(min_stride))
lateral_convs = []
output_convs = []
use_bias = fpn_norm == ""
for idx, in_channels in enumerate(self.scale_dims[:self.num_fpn_levels]):
lateral_norm = get_norm(fpn_norm, d_model)
output_norm = get_norm(fpn_norm, d_model)
lateral_conv = Conv2d(in_channels, d_model, kernel_size=1, bias=use_bias, norm=lateral_norm)
output_conv = Conv2d(d_model, d_model, kernel_size=3, padding=1, bias=use_bias, norm=output_norm, activation=F.relu)
self.add_module("adapter_{}".format(idx + 1), lateral_conv)
self.add_module("layer_{}".format(idx + 1), output_conv)
lateral_convs.append(lateral_conv)
output_convs.append(output_conv)
# Place convs into top-down order (from low to high resolution)
# to make the top-down computation in forward clearer.
self.lateral_convs = lateral_convs[::-1] # 8 4
self.output_convs = output_convs[::-1] # 8 4
def forward(self,
multiscales=None, # b c t h w
video_aux_dict=None, # dict{}
**kwargs):
batch_size, _, nf = multiscales[list(multiscales.keys())[0]].shape[:3]
video_aux_dict['nf'] = nf
multiscales = self.video_projs(multiscales)
assert set(list(multiscales.keys())).issubset(set(list(self.multiscale_shapes.keys())))
assert set(list(self.multiscale_shapes.keys())).issubset(set(list(multiscales.keys())))
srcs = []
poses = [] # 32, 16, 8
for idx, scale_name in enumerate(self.encoded_scales[::-1]):
x = multiscales[scale_name].permute(0, 2, 1, 3, 4).flatten(0,1).contiguous() # bt c h w
srcs.append(x)
poses.append(self.pos_2d(torch.zeros_like(x)[:, 0, :, :].bool(), hidden_dim=x.shape[1]))
memory, spatial_shapes, level_start_index, frame_feats, frame_poses = self.transformer(srcs=srcs,
pos_embeds=poses,
video_aux_dict=video_aux_dict)
bs = memory.shape[0]
spatial_index = 0
memory_features = [] # 32 16 8
for lvl in range(len(self.encoded_scales)):
h, w = spatial_shapes[lvl]
memory_lvl = memory[:, spatial_index : spatial_index + h * w, :].reshape(bs, h, w, -1).permute(0, 3, 1, 2).contiguous()
memory_features.append(memory_lvl)
spatial_index += h * w
for idx, f in enumerate(list(self.multiscale_shapes.keys())[:self.num_fpn_levels][::-1]):
x = multiscales[f].permute(0, 2, 1, 3, 4).flatten(0,1).contiguous() # bt c h w
cur_fpn = self.lateral_convs[idx](x)
y = cur_fpn + F.interpolate(memory_features[-1], size=cur_fpn.shape[-2:], mode="bilinear", align_corners=False)
y = self.output_convs[idx](y)
memory_features.append(y)
assert len(memory_features) == len(list(self.multiscale_shapes.keys()))
ret = {}
for key, out_feat in zip(list(self.multiscale_shapes.keys()), memory_features[::-1]):
ret[key] = rearrange(out_feat, '(b t) c h w -> b c t h w', b=batch_size, t=nf)
return ret, frame_feats[::-1], frame_poses # 32, 16, 8