You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
#Visualisasi_Tutupan_Hutan
plt.figure(figsize=(10,5))
sns.barplot(x="Kecamatan", y="Tutupan_Hutan_%", data=df, palette="Greens")
plt.title("Persentase Tutupan Hutan di Wilayah IKN per Kecamatan")
plt.xlabel("Kecamatan")
plt.ylabel("Tutupan Hutan (%)")
plt.show()
#Visualisasi_Korelasi_Heatmap
plt.figure(figsize=(8,6))
sns.heatmap(df.corr(), annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Korelasi Antar Variabel dalam Dataset IKN")
plt.show()
#Data_Training_Deep_Learning
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
X = df[["Luas_Wilayah_km2", "Jumlah_Penduduk", "Lahan_Terbangun_%", "Perkebunan_%", "Semak_Belukar_%", "Sawah_%", "Padang_Rumput_%", "Pertambangan_%"]]
y = df["Tutupan_Hutan_%"]
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
#Dataset_wilayah_IKN_kecamatan
data = {
"Kecamatan": ["Sepaku", "Loa Kulu", "Samboja", "Loa Janan", "Muara Jawa", "Sanga Sanga"],
"Luas_Wilayah_km2": [1210, 950, 1000, 870, 600, 500],
"Tutupan_Hutan_%": [42.31, 38.5, 40.2, 36.7, 30.5, 28.9],
"Jumlah_Penduduk": [50000, 45000, 60000, 55000, 40000, 30000],
"Lahan_Terbangun_%": [10, 12, 14, 16, 18, 20],
"Perkebunan_%": [29.18, 30.0, 27.5, 28.9, 25.6, 22.3],
"Semak_Belukar_%": [13.74, 15.2, 14.5, 16.0, 17.5, 18.3],
"Sawah_%": [2.5, 3.0, 2.8, 3.2, 3.5, 3.8],
"Padang_Rumput_%": [1.2, 1.5, 1.8, 2.0, 2.2, 2.5],
"Pertambangan_%": [0.5, 0.8, 1.0, 1.2, 1.5, 1.8]
}
#Konversi_DataFrame
df = pd.DataFrame(data)
#Simpan_dataset_CSV
df.to_csv("ikn_data.csv", index=False)
#Visualisasi_Tutupan_Hutan
plt.figure(figsize=(10,5))
sns.barplot(x="Kecamatan", y="Tutupan_Hutan_%", data=df, palette="Greens")
plt.title("Persentase Tutupan Hutan di Wilayah IKN per Kecamatan")
plt.xlabel("Kecamatan")
plt.ylabel("Tutupan Hutan (%)")
plt.show()
#Visualisasi_Korelasi_Heatmap
plt.figure(figsize=(8,6))
sns.heatmap(df.corr(), annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Korelasi Antar Variabel dalam Dataset IKN")
plt.show()
#Data_Training_Deep_Learning
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
X = df[["Luas_Wilayah_km2", "Jumlah_Penduduk", "Lahan_Terbangun_%", "Perkebunan_%", "Semak_Belukar_%", "Sawah_%", "Padang_Rumput_%", "Pertambangan_%"]]
y = df["Tutupan_Hutan_%"]
#Normalisasi_data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
#Split_data_training_testing
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
The text was updated successfully, but these errors were encountered: