Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DATA TRAINING #234

Open
D3XT3R404 opened this issue Feb 11, 2025 · 0 comments
Open

DATA TRAINING #234

D3XT3R404 opened this issue Feb 11, 2025 · 0 comments

Comments

@D3XT3R404
Copy link

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

#Dataset_wilayah_IKN_kecamatan
data = {
"Kecamatan": ["Sepaku", "Loa Kulu", "Samboja", "Loa Janan", "Muara Jawa", "Sanga Sanga"],
"Luas_Wilayah_km2": [1210, 950, 1000, 870, 600, 500],
"Tutupan_Hutan_%": [42.31, 38.5, 40.2, 36.7, 30.5, 28.9],
"Jumlah_Penduduk": [50000, 45000, 60000, 55000, 40000, 30000],
"Lahan_Terbangun_%": [10, 12, 14, 16, 18, 20],
"Perkebunan_%": [29.18, 30.0, 27.5, 28.9, 25.6, 22.3],
"Semak_Belukar_%": [13.74, 15.2, 14.5, 16.0, 17.5, 18.3],
"Sawah_%": [2.5, 3.0, 2.8, 3.2, 3.5, 3.8],
"Padang_Rumput_%": [1.2, 1.5, 1.8, 2.0, 2.2, 2.5],
"Pertambangan_%": [0.5, 0.8, 1.0, 1.2, 1.5, 1.8]
}

#Konversi_DataFrame
df = pd.DataFrame(data)

#Simpan_dataset_CSV
df.to_csv("ikn_data.csv", index=False)

#Visualisasi_Tutupan_Hutan
plt.figure(figsize=(10,5))
sns.barplot(x="Kecamatan", y="Tutupan_Hutan_%", data=df, palette="Greens")
plt.title("Persentase Tutupan Hutan di Wilayah IKN per Kecamatan")
plt.xlabel("Kecamatan")
plt.ylabel("Tutupan Hutan (%)")
plt.show()

#Visualisasi_Korelasi_Heatmap
plt.figure(figsize=(8,6))
sns.heatmap(df.corr(), annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Korelasi Antar Variabel dalam Dataset IKN")
plt.show()

#Data_Training_Deep_Learning
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

X = df[["Luas_Wilayah_km2", "Jumlah_Penduduk", "Lahan_Terbangun_%", "Perkebunan_%", "Semak_Belukar_%", "Sawah_%", "Padang_Rumput_%", "Pertambangan_%"]]
y = df["Tutupan_Hutan_%"]

#Normalisasi_data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

#Split_data_training_testing
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

@D3XT3R404 D3XT3R404 changed the title WEB SCRAPING DATA TRAINING Feb 11, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant