-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcal-gan-metrics-origin.py
263 lines (197 loc) · 15 KB
/
cal-gan-metrics-origin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import argparse
import data_with_matchingclassifier as dataset
# from generation_builder import ExperimentBuilder
from GAN_Metrics_Tensorflow.frechet_kernel_Inception_distance import *
from GAN_Metrics_Tensorflow.inception_score import *
import numpy as np
from glob import glob
import os
import cv2
parser = argparse.ArgumentParser(description='Welcome to GAN-Shot-Learning script')
parser.add_argument('--batch_size', nargs="?", type=int, default=20, help='batch_size for experiment')
parser.add_argument('--discriminator_inner_layers', nargs="?", type=int, default=1, help='discr_number_of_conv_per_layer')
parser.add_argument('--generator_inner_layers', nargs="?", type=int, default=1, help='discr_number_of_conv_per_layer')
parser.add_argument('--experiment_title', nargs="?", type=str, default="densenet_generator_fc", help='Experiment name')
parser.add_argument('--continue_from_epoch', nargs="?", type=int, default=-1, help='continue from checkpoint of epoch')
parser.add_argument('--num_of_gpus', nargs="?", type=int, default=1, help='discr_number_of_conv_per_layer')
parser.add_argument('--z_dim', nargs="?", type=int, default=100, help='The dimensionality of the z input')
parser.add_argument('--dropout_rate_value', type=float, default=0.5, help='dropout_rate_value')
parser.add_argument('--num_generations', nargs="?", type=int, default=16, help='num_generations')
parser.add_argument('--support_number', nargs="?", type=int, default=3, help='num_support')
parser.add_argument('--use_wide_connections', nargs="?", type=str, default="False",
help='Whether to use wide connections in discriminator')
parser.add_argument('--matching', nargs="?", type=int, default=0)
parser.add_argument('--fce', nargs="?", type=int, default=0)
parser.add_argument('--full_context_unroll_k', nargs="?", type=int, default=4)
parser.add_argument('--average_per_class_embeddings', nargs="?", type=int, default=0)
parser.add_argument('--is_training', nargs="?", type=int, default=0)
parser.add_argument('--samples_each_category',type=int, default=20)
parser.add_argument('--classification_total_epoch',type=int, default=200)
parser.add_argument('--dataset',type=str, default='flowers')
parser.add_argument('--general_classification_samples',type=int, default=5)
parser.add_argument('--selected_classes',type=int, default=0)
parser.add_argument('--image_width', nargs="?", type=int, default=128)
parser.add_argument('--image_channel', nargs="?", type=int, default=3)
args = parser.parse_args()
batch_size = args.batch_size
num_gpus = args.num_of_gpus
support_num = args.support_number
# data = dataset.OmniglotDAGANDataset(batch_size=batch_size, last_training_class_index=900, reverse_channels=True,
# num_of_gpus=num_gpus, gen_batches=1000, support_number=support_num,is_training=args.is_training)
if args.dataset == 'omniglot':
print('omniglot')
data = dataset.OmniglotDAGANDataset(batch_size=batch_size, last_training_class_index=900, reverse_channels=True,
num_of_gpus=num_gpus, gen_batches=1000, support_number=support_num,is_training=args.is_training,general_classification_samples=args.general_classification_samples,selected_classes=args.selected_classes, image_size=args.image_width)
elif args.dataset == 'vggface':
print('vggface')
data = dataset.VGGFaceDAGANDataset(batch_size=batch_size, last_training_class_index=1600, reverse_channels=True,
num_of_gpus=num_gpus, gen_batches=1000, support_number=support_num,is_training=args.is_training,general_classification_samples=args.general_classification_samples,selected_classes=args.selected_classes,image_size=args.image_width)
elif args.dataset == 'miniimagenet':
print('miniimagenet')
data = dataset.miniImagenetDAGANDataset(batch_size=batch_size, last_training_class_index=900, reverse_channels=True,
num_of_gpus=num_gpus, gen_batches=1000, support_number=support_num,is_training=args.is_training,general_classification_samples=args.general_classification_samples,selected_classes=args.selected_classes,image_size=args.image_width)
elif args.dataset == 'emnist':
print('emnist')
data = dataset.emnistDAGANDataset(batch_size=batch_size, last_training_class_index=900, reverse_channels=True,
num_of_gpus=num_gpus, gen_batches=1000, support_number=support_num,is_training=args.is_training,general_classification_samples=args.general_classification_samples,selected_classes=args.selected_classes,image_size=args.image_width)
elif args.dataset == 'figr':
print('figr')
data = dataset.FIGRDAGANDataset(batch_size=batch_size, last_training_class_index=900, reverse_channels=True,
num_of_gpus=num_gpus, gen_batches=1000, support_number=support_num,is_training=args.is_training,general_classification_samples=args.general_classification_samples,selected_classes=args.selected_classes,image_size=args.image_width)
elif args.dataset == 'fc100':
data = dataset.FC100DAGANDataset(batch_size=batch_size, last_training_class_index=900, reverse_channels=True,
num_of_gpus=num_gpus, gen_batches=1000, support_number=support_num,is_training=args.is_training,general_classification_samples=args.general_classification_samples,selected_classes=args.selected_classes,image_size=args.image_width)
elif args.dataset == 'animals':
data = dataset.animalsDAGANDataset(batch_size=batch_size, last_training_class_index=900, reverse_channels=True,
num_of_gpus=num_gpus, gen_batches=1000, support_number=support_num,is_training=args.is_training,general_classification_samples=args.general_classification_samples,selected_classes=args.selected_classes,image_size=args.image_width)
elif args.dataset == 'flowers':
data = dataset.flowersDAGANDataset(batch_size=batch_size, last_training_class_index=900, reverse_channels=True,
num_of_gpus=num_gpus, gen_batches=1000, support_number=support_num,is_training=args.is_training,general_classification_samples=args.general_classification_samples,selected_classes=args.selected_classes,image_size=args.image_width)
elif args.dataset == 'flowersselected':
data = dataset.flowersselectedDAGANDataset(batch_size=batch_size, last_training_class_index=900, reverse_channels=True,
num_of_gpus=num_gpus, gen_batches=1000, support_number=support_num,is_training=args.is_training,general_classification_samples=args.general_classification_samples,selected_classes=args.selected_classes,image_size=args.image_width)
elif args.dataset == 'birds':
data = dataset.birdsDAGANDataset(batch_size=batch_size, last_training_class_index=900, reverse_channels=True,
num_of_gpus=num_gpus, gen_batches=1000, support_number=support_num,is_training=args.is_training,general_classification_samples=args.general_classification_samples,selected_classes=args.selected_classes,image_size=args.image_width)
def resize_image(image):
image = cv2.resize(image,(299, 299), interpolation=cv2.INTER_LINEAR)
return image
def get_real_fake_images(fake_images_path):
real_images = data.get_total_batch_images('test',args.samples_each_category)
real_images_after = np.zeros([np.shape(real_images)[0],299,299,np.shape(real_images)[3]])
for i in range(np.shape(real_images)[0]):
resized_image = resize_image(real_images[i])
if len(np.shape(resized_image))<3:
resized_image = np.expand_dims(resized_image,axis=-1)
real_images_after[i] = resized_image
real_images_after = 255*(real_images_after/np.max(real_images_after))
real_images_after = np.transpose(real_images_after, axes=[0, 3, 1, 2])
# print('real data shape',np.shape(real_images_after))
filenames = glob(os.path.join(fake_images_path, '*.*'))
fake_categories = len(filenames)*args.batch_size
fake_images = np.zeros([fake_categories*args.samples_each_category,args.image_width, args.image_width, args.image_channel])
for i,image_path in enumerate(filenames):
##(batchsize*28,num_generation+1+support_number)
current_x = misc.imread(image_path)
image_size = int(np.shape(current_x)[0]/ args.batch_size)
for j in range(args.batch_size):
for k in range(args.num_generations):
if k < args.samples_each_category:
current_iamge = current_x[image_size*j:image_size*(j+1),image_size*(1+args.support_number+k):image_size*(1+args.support_number+k+1)]
if len(np.shape(current_iamge))<3:
current_iamge = np.expand_dims(current_iamge,axis=-1)
fake_images[args.batch_size*i+j*args.samples_each_category+k] = current_iamge
# fake_images = data.preprocess_data(fake_images)
fake_images_after = np.zeros([np.shape(fake_images)[0],299,299,np.shape(fake_images)[3]])
for i in range(np.shape(fake_images)[0]):
resized_image = resize_image(fake_images[i])
if len(np.shape(resized_image))<3:
resized_image = np.expand_dims(resized_image,axis=-1)
fake_images_after[i] = resized_image
fake_images_after = 255*(fake_images_after/np.max(fake_images_after))
fake_images_after = np.transpose(fake_images_after, axes=[0, 3, 1, 2])
# print('fake data shape',np.shape(fake_images_after))
##### extending to three channel images for evaluation metrics
if np.shape(real_images_after)[1]<3:
three_channel_real_images = np.concatenate([real_images_after, real_images_after, real_images_after], axis=1)
three_channel_fake_images = np.concatenate([fake_images_after, fake_images_after, fake_images_after], axis=1)
else:
three_channel_real_images = real_images_after
three_channel_fake_images = fake_images_after
print('fake',np.max(three_channel_fake_images),np.min(three_channel_fake_images))
print('real',np.max(three_channel_real_images),np.min(three_channel_real_images))
print('real images',np.shape(three_channel_real_images))
print('fake images',np.shape(three_channel_fake_images))
return three_channel_real_images, three_channel_fake_images
# return three_channel_fake_images, three_channel_fake_images
def inception_score(fake_images_path) :
_,images = get_real_fake_images(fake_images_path)
BATCH_SIZE = 32
inception_images = tf.placeholder(tf.float32, [BATCH_SIZE, 3, None, None])
logits = inception_logits(inception_images)
IS = get_inception_score(BATCH_SIZE, images, inception_images, logits, splits=10)
print()
print("IS : ", IS)
def frechet_inception_distance(fake_images_path) :
real_images, fake_images = get_real_fake_images(fake_images_path)
BATCH_SIZE = 32
# Run images through Inception.
inception_images = tf.placeholder(tf.float32, [BATCH_SIZE, 3, None, None])
real_activation = tf.placeholder(tf.float32, [None, None], name='activations1')
fake_activation = tf.placeholder(tf.float32, [None, None], name='activations2')
fcd = frechet_classifier_distance_from_activations(real_activation, fake_activation)
activations = inception_activations(inception_images)
FID = get_fid(fcd, BATCH_SIZE, real_images, fake_images, inception_images, real_activation, fake_activation, activations)
print()
print("FID : ", FID)
def kernel_inception_distance(fake_images_path) :
real_images, fake_images = get_real_fake_images(fake_images_path)
BATCH_SIZE = 32
inception_images = tf.placeholder(tf.float32, [BATCH_SIZE, 3, None, None])
real_activation = tf.placeholder(tf.float32, [None, None], name='activations1')
fake_activation = tf.placeholder(tf.float32, [None, None], name='activations2')
kcd_mean, kcd_stddev = kernel_classifier_distance_and_std_from_activations(real_activation, fake_activation, max_block_size=10)
activations = inception_activations(inception_images)
KID_mean = get_kid(kcd_mean, BATCH_SIZE, real_images, fake_images, inception_images, real_activation, fake_activation, activations)
KID_stddev = get_kid(kcd_stddev, BATCH_SIZE, real_images, fake_images, inception_images, real_activation, fake_activation, activations)
print()
print("KID_mean : ", KID_mean * 100)
print("KID_stddev : ", KID_stddev * 100)
def mean_kernel_inception_distance() :
filenames = glob(os.path.join('./real_source', '*.*'))
real_source_images = [get_images(filename) for filename in filenames]
real_source_images = np.transpose(real_source_images, axes=[0, 3, 1, 2])
filenames = glob(os.path.join('./real_target', '*.*'))
real_target_images = [get_images(filename) for filename in filenames]
real_target_images = np.transpose(real_target_images, axes=[0, 3, 1, 2])
filenames = glob(os.path.join('./fake', '*.*'))
fake_images = [get_images(filename) for filename in filenames]
fake_images = np.transpose(fake_images, axes=[0, 3, 1, 2])
BATCH_SIZE = 32
# Run images through Inception.
inception_images = tf.placeholder(tf.float32, [BATCH_SIZE, 3, None, None])
real_activation = tf.placeholder(tf.float32, [None, None], name='activations1')
fake_activation = tf.placeholder(tf.float32, [None, None], name='activations2')
fcd = frechet_classifier_distance_from_activations(real_activation, fake_activation)
kcd_mean, kcd_stddev = kernel_classifier_distance_and_std_from_activations(real_activation, fake_activation,
max_block_size=10)
activations = inception_activations(inception_images)
FID = get_fid(fcd, BATCH_SIZE, real_target_images, fake_images, inception_images, real_activation, fake_activation, activations)
KID_mean = get_kid(kcd_mean, BATCH_SIZE, real_target_images, fake_images, inception_images, real_activation, fake_activation, activations)
KID_stddev = get_kid(kcd_stddev, BATCH_SIZE, real_target_images, fake_images, inception_images, real_activation, fake_activation, activations)
mean_FID = get_fid(fcd, BATCH_SIZE, real_source_images, fake_images, inception_images, real_activation, fake_activation, activations)
mean_KID_mean = get_kid(kcd_mean, BATCH_SIZE, real_source_images, fake_images, inception_images, real_activation, fake_activation, activations)
mean_KID_stddev = get_kid(kcd_stddev, BATCH_SIZE, real_source_images, fake_images, inception_images, real_activation, fake_activation, activations)
mean_FID = (FID + mean_FID) / 2.0
mean_KID_mean = (KID_mean + mean_KID_mean) / 2.0
mean_KID_stddev = (KID_stddev + mean_KID_stddev) / 2.0
print()
print("mean_FID : ", mean_FID)
print("mean_KID_mean : ", mean_KID_mean * 100)
print("mean_KID_stddev : ", mean_KID_stddev * 100)
fake_images_path = './vggface1way3shotNEW/test/'
inception_score(fake_images_path)
frechet_inception_distance(fake_images_path)
kernel_inception_distance(fake_images_path)
mean_kernel_inception_distance()
# python cal-gan-metrics.py --batch_size 20 --support_number 3 --dataset vggface --image_channel 3 --image_width 128