-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
156 lines (142 loc) · 7.88 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
"""General-purpose test script for image-to-image translation.
Once you have trained your model with train.py, you can use this script to test the model.
It will load a saved model from --checkpoints_dir and save the results to --results_dir.
It first creates model and dataset given the option. It will hard-code some parameters.
It then runs inference for --num_test images and save results to an HTML file.
Example (You need to train models first or download pre-trained models from our website):
Test a CycleGAN model (both sides):
python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
Test a CycleGAN model (one side only):
python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout
The option '--model test' is used for generating CycleGAN results only for one side.
This option will automatically set '--dataset_mode single', which only loads the images from one set.
On the contrary, using '--model cycle_gan' requires loading and generating results in both directions,
which is sometimes unnecessary. The results will be saved at ./results/.
Use '--results_dir <directory_path_to_save_result>' to specify the results directory.
Test a pix2pix model:
python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA
See options/base_options.py and options/test_options.py for more test options.
See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md
See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md
"""
import os
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
from util.visualizer import save_images
from util import html
import util.util as util
import torch
import numpy as np
import ntpath
import torch.distributed as dist
import torch
from cal_fid import get_fid
import torchvision
from evaluation.evaluate_maps import eval_maps
from evaluation.evaluate_city2parsing import eval_city2parsing
from evaluation.parsing2city.evaluate import eval_parsing2city
def cleanup():
dist.destroy_process_group()
if __name__ == '__main__':
opt = TestOptions().parse() # get test options
opt.name = os.path.join(opt.dataroot.strip('../data/'), opt.model,
str(opt.batch_size) + '_' + str(opt.crop_size)
+ '_' + opt.direction
+ ('_' + opt.netG + '_' + opt.netD))
# hard-code some parameters for test
opt.num_threads = 10 # test code only supports num_threads = 1
opt.batch_size = 20 # test code only supports batch_size = 1
opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
opt.no_flip = True # no flip; comment this line if results on flipped images are needed.
opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file.
opt.load_size = opt.crop_size
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
model = create_model(opt) # create a model given opt.model and other options
opt.name = model.name
model = create_model(opt)
model.parallelize()
model.setup(opt)
if opt.eval:
model.eval()
# create a webpage for viewing the results
web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) # define the website directory
print('creating web directory', web_dir)
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch))
with torch.no_grad():
for i, data in enumerate(dataset):
model.set_input(data) # unpack data from data loader
model.test() # run inference
visuals = model.get_current_visuals() # get image results
img_path = model.get_image_paths() # get image paths
if i % 5 == 0: # save images to an HTML file
print('processing (%04d)-th image... %s' % (i, img_path))
text_path = os.path.join(save_images(webpage, visuals, img_path, width=opt.display_winsize))
if opt.model =='cycle_gan':
save_path_B = os.path.join(text_path, 'fake_B')
save_path_A = os.path.join(text_path, 'fake_A')
else:
save_path = os.path.join(text_path,'fake_B')
# print(img_path[0])
for k, path in enumerate(img_path):
short_path = ntpath.basename(path)
name = os.path.splitext(short_path)[0]
if 'T1' in opt.dataroot:
np.save(os.path.join(save_path, name),
visuals['fake_B'].cpu().numpy()[k])
else:
if opt.model == 'cycle_gan':
saved_img = ((((visuals['fake_B'].cpu()[k]) + 1.0) / 2.0))
torchvision.utils.save_image(saved_img, os.path.join(save_path_B, name + '.png'))
saved_img = ((((visuals['fake_A'].cpu()[k]) + 1.0) / 2.0))
torchvision.utils.save_image(saved_img, os.path.join(save_path_A, name + '.png'))
else:
saved_img = ((((visuals['fake_B'].cpu()[k]) + 1.0) / 2.0))
torchvision.utils.save_image(saved_img, os.path.join(save_path, name + '.png'))
# util.save_image(saved_img, os.path.join(save_path, name, 'png'))
webpage.save() # save the HTML
if opt.dataroot.strip('../data/') == 'cityscapes':
if opt.model == 'cycle_gan':
real_root = os.path.join(opt.dataroot, 'testB')
metric = eval_city2parsing(real_root, save_path_B)
real_root = os.path.join(opt.dataroot, 'testB')
metric += '\n' + eval_parsing2city(real_root, save_path_A)
else:
if opt.direction == 'AtoB':
real_root = os.path.join(opt.dataroot, 'testB')
metric = eval_city2parsing(real_root, save_path)
elif opt.direction == 'BtoA':
real_root = os.path.join(opt.dataroot, 'testB')
metric = eval_parsing2city(real_root, save_path)
elif opt.dataroot.strip('../data/') == 'maps':
if opt.model == 'cycle_gan':
real_root = os.path.join(opt.dataroot, 'testB')
metric = eval_maps(real_root, save_path_B)
real_root = os.path.join(opt.dataroot, 'testA')
metric += '\n' + eval_maps(real_root, save_path_A)
else:
real_root = os.path.join(opt.dataroot, ('testB' if opt.direction == 'AtoB' else 'testA'))
metric = eval_maps(real_root, save_path)
else:
if opt.phase == 'test':
if opt.model == 'cycle_gan':
real_root_A = os.path.join(opt.dataroot, 'testA')
real_root_B = os.path.join(opt.dataroot, 'testB')
else:
real_root = os.path.join(opt.dataroot, ('testB' if opt.direction == 'AtoB' else 'testA'))
elif opt.phase == 'train':
if opt.model == 'cycle_gan':
real_root_A = os.path.join(opt.dataroot, 'trainA')
real_root_B = os.path.join(opt.dataroot, 'trainB')
else:
real_root = os.path.join(opt.dataroot, ('trainB' if opt.direction == 'AtoB' else 'trainA'))
if opt.model == 'cycle_gan':
fid = get_fid([real_root_A, save_path_A], 50, 2048, 8)
metric = 'fid: ' + str(fid)
fid = get_fid([real_root_B, save_path_B], 50, 2048, 8)
metric += '\n' + 'fid: ' + str(fid)
else:
fid = get_fid([real_root, save_path], 50, 2048, 8)
metric = 'fid: ' + str(fid)
file = open(os.path.join(text_path, 'eval_result.txt'), 'w')
file.writelines(metric)