forked from datienguyen/cnn_coherence
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_cnn.sh
59 lines (40 loc) · 1.39 KB
/
run_cnn.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
### <- set paths - >
data="./final_data/"
CNN_SCR="cnn_ext_coherence.py"
#EXP_DIR="saved_exp/"
MODEL_DIR="saved_CNET/"
mkdir -p $MODEL_DIR
#mkdir -p $EXP_DIR
###<- Set general DNN settings ->
dr_ratios=(0.5) #dropout_ratio
mb_sizes=(64 32) #minibatch-size
### <- set CNN settings ->
nb_filters=(150) #no of feature map
w_sizes=(5 3)
pool_lengths=(6 8)
max_lengths=(14000 8000)
emb_sizes=(100 50)
log="log.CNET"
echo "Training...!" > $log
#for feat in ${features[@]}; do
for ratio in ${dr_ratios[@]}; do
for nb_filter in ${nb_filters[@]}; do
for w_size in ${w_sizes[@]}; do
for pool_len in ${pool_lengths[@]}; do
for mb in ${mb_sizes[@]}; do
for maxlen in ${max_lengths[@]}; do
for emb_size in ${emb_sizes[@]}; do
echo "INFORMATION: dropout_ratio=$ratio filter-nb=$nb_filter w_size=$w_size pool_len=$pool_len batch-size=$mb maxlen=$maxlen emb_size=$emb_size feats=$feat">> $log;
echo "----------------------------------------------------------------------" >> $log;
>>$log
wait
echo "----------------------------------------------------------------------" >> $log;
done
done
done
done
done
done
done
#done
#THEANO_FLAGS=device=gpu2,floatX=float32 python nur_cnn.py --data-dir=dataset/ --model-dir=saved_nur/ --dropout_ratio=0.3 --minibatch-size=32 --emb-size=100 --nb_filter=150 --w_size=5 --pool_length=6 --max-length=14000