-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathDistributionalForecasts.jl
373 lines (307 loc) · 11.1 KB
/
DistributionalForecasts.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
## Exponential moving average
function EWMA(x)
ewmaVar = zeros(length(x),1)
ewmaVar[1] = var(x)
for i in 2:length(x)
ewmaVar[i] = 0.94*ewmaVar[i-1]+ (1.0 - 0.94)*x[i-1]^2.0
end
ewmaVol = sqrt.(ewmaVar);
return ewmaVol
end
## OLS estimate
function OLSestimator(y,x)
estimate = (transpose(x)*x) \ (transpose(x)*y)
return estimate
end
## Function to generate polynoms
function delta3j(js)
alphaj = collect(linspace(0.05, 0.95, js))
delta0 = collect(linspace(1.0, 1.0, length(alphaj)))
delta1 = 2.0*(alphaj - 0.5)
delta2 = (2.0^2.0)*((alphaj - 0.5).^2.0)
delta3 = (2.0^3.0)*((alphaj - 0.5).^3.0)
delta4 = (2.0^4.0)*((alphaj - 0.5).^4.0)
delta5 = (2.0^5.0)*((alphaj - 0.5).^5.0)
return [delta0 delta1 delta2 delta3 delta4 delta5]
end
## Fucntion to obtain initial estimates
function getinitlogit(rets, js,p1,p2)
n = length(rets)
x2 = log.(1 + abs.(rets))[1:(n-1)];
alphaj = collect(linspace(0.05, 0.95, js))
coefdf = zeros(js, 3)
estlog = 0.0
for j in collect(1:(js))
indx1 = (rets .< (EWMA(rets).*quantile.(Normal(0,1), alphaj[j])) ).*1.0;
data1 = DataFrame([indx1[2:n], indx1[1:(n-1)], x2], [:y, :x1, :x2]);
estlog = glm(@formula(y ~ x1 + x2), data1, Binomial(), LogitLink());
coefdf[j,:] = coef(estlog)
end
## Estimation of kappas from deltas
delta = delta3j(js)
kapa1 = OLSestimator(coefdf[:, 2], delta[:,1:(p1+1)]);
kapa2 = OLSestimator(coefdf[:, 3], delta[:,1:(p2+1)]);
kapainit = [coefdf[:, 1]; kapa1; kapa2]
return kapainit
end
## LL function
function loglikeFinalstd(x, param0,p1,p2)
##
rets = x
n = length(rets)
m = zeros(n)
theta = zeros(n)
n_alpha = length(param0) - (p1+p2+2)
prob = zeros(n, n_alpha)
alphaj = collect(linspace(0.05, 0.95, n_alpha))
cuts=zeros(n,n_alpha);
for i in collect(1:n_alpha)
cuts[:,i]=EWMA(rets)*quantile.(Normal(0,1), alphaj[i])
end
##
powers = [p1; p2]
## looping over time=j, and quantiles=i
for j in collect(1:n)
for i in collect(1:n_alpha)
##
theta[j] = param0[1 + (i-1)*1]
poly_1 = param0[1 + n_alpha]
poly_2 = param0[2 + n_alpha + powers[1]]
## first polynoms in delta1
for l in collect(1:powers[1])
poly_1 = poly_1 + param0[1 + n_alpha + l] * (2.0 * alphaj[i] - 1.0)^l
end
## second polynoms in delta2
for l in collect(1:powers[2])
poly_2 = poly_2 + param0[2 + n_alpha + powers[1]+l] * (2.0 * alphaj[i] - 1.0)^l
end
##
if j==1
theta[j]=theta[j] + poly_1*mean(rets.<cuts[:,i]) + poly_2*mean(log.(1.0+abs.(rets)))
else
theta[j]=theta[j] + poly_1*(rets[j-1]<cuts[j-1,i]) + poly_2*log.(1.0+abs.(rets[j-1]))
end
##
prob[j, i] = 1.0 / (1.0 + exp.(-theta[j]))
end
m[j] = (rets[j] <= cuts[j,1]) * log.(prob[j, 1])
for i in collect(2:n_alpha)
if (prob[j, i] - prob[j, i-1]) <= 0.0
prob[j, i] = prob[j, i-1] + 0.00001
end
m[j] = m[j] + ((rets[j] <= cuts[j,i]) * (rets[j] > cuts[j,i-1])) * log.(prob[j, i] - prob[j, i-1])
end
if (1.0 - prob[j, n_alpha]) <= 0.0
prob[j, n_alpha] = 0.99999
end
m[j] = m[j] + (rets[j] > cuts[j,n_alpha]) * log.(1.0 - prob[j, n_alpha])
end
##
return m
end
function loglikeFinal(x, param0,p1,p2)
m = loglikeFinalstd(x, param0,p1,p2)
return -sum(m)
end
# Estimate parameters
function OrderedLogitparameters(x,q,p1,p2)
kapainit = getinitlogit(x,q,p1,p2)
estone = optimize(kapainit -> loglikeFinal(x, kapainit,p1,p2), kapainit, NelderMead(), Optim.Options(g_tol=1e-5, iterations=100))
par = estone.minimizer
return par
end
# Parameters and inference
function OrderedLogit(x,q,p1,p2)
kapainit = getinitlogit(x,q,p1,p2)
estone = optimize(kapainit -> loglikeFinal(x, kapainit,p1,p2), kapainit, NelderMead(), Optim.Options(g_tol=1e-5, iterations=100))
par = estone.minimizer
n=length(x)
b=par'
k=length(b)
frac = 0.00001;
h=frac*b
e = eye(k)
DfDp=zeros(n,k)
for i in 1:k
DfDp[:,i] = (loglikeFinalstd(x, b'+h'.*e[i,:],p1,p2)-loglikeFinalstd(x, b'-h'.*e[i,:],p1,p2))./h[i]/2.0
end
DfDp2=zeros(k,k);
for i in 1:k
for j in 1:i
DfDp2[i,j] = mean(DfDp[:,i].*DfDp[:,j])
DfDp2[j,i] = DfDp2[i,j];
end
end
Df2Dp=zeros(k,k);
for i in 1:k
for j in 1:i
if i==j;
Df2Dp[i,i] = mean((loglikeFinalstd(x, b'+h'.*e[i,:],p1,p2)-2.0*loglikeFinalstd(x, b,p1,p2)+loglikeFinalstd(x, b'-h'.*e[i,:],p1,p2))./(h[i]^2.0));
else
Df2Dp[i,j] = mean((loglikeFinalstd(x, b'+h'.*(e[i,:]+e[j,:]),p1,p2)-loglikeFinalstd(x, b'+h'.*(e[i,:]-e[j,:]),p1,p2)-loglikeFinalstd(x, b'+h'.*(e[j,:]-e[i,:]),p1,p2)+loglikeFinalstd(x, b'-h'.*(e[i,:]+e[j,:]),p1,p2))./(4.0*h[i]*h[j]));
Df2Dp[j,i] = Df2Dp[i,j];
end
end
end
Df2Dp=-Df2Dp;
J = inv(Df2Dp)
sterr=sqrt.(diag(J*DfDp2*J)/n)
t=b'./sterr
LL=estone.minimum
AIC = -2LL + 2k + 2k*(k+1)/(n-k-1)
BIC = -2LL + k*log(n)
return [par,sterr,t,LL,AIC,BIC]
end
function forecastProbs(x, y, q,p1,p2)
kapainit = getinitlogit(x,q,p1,p2)
estone = optimize(kapainit -> loglikeFinal(x, kapainit,p1,p2), kapainit, NelderMead(), Optim.Options(g_tol=1e-5, iterations=100))
param0 = estone.minimizer
rets0 = x
rets = y
n = length(rets)
m = zeros(n)
theta = zeros(n)
n_alpha = length(param0) - (p1+p2+2)
prob = zeros(n, n_alpha)
alphaj = collect(linspace(0.05, 0.95, n_alpha))
cuts=EWMA(rets)[length(rets)].*quantile.(Normal(0,1), alphaj)
powers = [p1; p2]
wrong=zeros(n)
## looping over time=j, and quantiles=i
for j in collect(2:n)
for i in collect(1:n_alpha)
##
theta[j] = param0[1 + (i-1)*1]
poly_1 = param0[1 + n_alpha]
poly_2 = param0[2 + n_alpha + powers[1]]
## first polynoms in delta1
for l in collect(1:powers[1])
poly_1 = poly_1 + param0[1 + n_alpha + l] * (2.0 * alphaj[i] - 1.0)^l
end
## second polynoms in delta2
for l in collect(1:powers[2])
poly_2 = poly_2 + param0[2 + n_alpha + powers[1]+l] * (2.0 * alphaj[i] - 1.0)^l
end
theta[j]=theta[j] + poly_1*(rets[j-1]<cuts[i]) + poly_2*log.(1.0+abs.(rets[j-1]))
prob[j, i] = 1.0 / (1.0 + exp.(-theta[j]))
end
for i in collect(2:n_alpha)
if (prob[j, i] - prob[j, i-1]) <= 0.0
prob[j, i] = prob[j, i-1] + 0.00001
#wrong[j] = 1
end
end
end
return prob[2:n,:]
end
## ------------------------------------------
## Statistical evaluation of forecasts
## ------------------------------------------
function Interpol(xs,ys,x)
n = length(xs)
dxs = xs[2:n]-xs[1:n-1]
dys = ys[2:n]-ys[1:n-1]
Ds = dys./dxs
ms = [Ds[1];(Ds[1:n-2]+Ds[2:n-1])/2;Ds[n-1]]
as = ms[1:n-1]./Ds[1:n-1]
bs = ms[2:n]./Ds[1:n-1]
cir = (as.^2)+(bs.^2)
ex = cir.>9
tau = 3./sqrt.(cir).*ex + 1-ex
ms = ms.*[tau;1].*[1;tau]
if findfirst(xs.>x) == 0
ind_u = 2
elseif findfirst(xs.>x) == 1
ind_u = 2
else
ind_u = findfirst(xs.>x)
end
x_u = xs[ind_u]
x_l = xs[ind_u-1]
h = x_u-x_l
t = (x-x_l)./h
fx = ys[ind_u-1]*(2*t^3-3*t^2+1) + h*ms[ind_u-1]*(t^3-2*t^2+t) + ys[ind_u]*(-2*t^3+3*t^2) + h*ms[ind_u]*(t^3-t^2)
return fx
end
function Berkowitz(pit)
Zb = zeros(length(pit))
pit[pit.>=1] =0.9999999
pit[pit.<=0] =0.0000001
for t in collect(1:length(pit))
Zb[t] = norminvcdf(abs.(pit[t]))
end
naux = length(Zb)-1
mu_hat = sum(Zb)/naux
Xaux = Zb[1:(length(Zb)-1)]-mu_hat
Yaux = Zb[2:length(Zb)]-mu_hat
rho_hat = Xaux'Yaux/(Xaux'Xaux)
eps_hat = Yaux-rho_hat*Xaux
s2_hat = sum(eps_hat.^2)/naux
LLu = -1/2*naux*log(s2_hat) - 1/2/s2_hat*eps_hat'eps_hat
LLr = - 1/2*Yaux'Yaux
LR = -2*(LLr-LLu)
return [LR,ccdf(Chisq(3), LR)]
end
function GonzalezRivera(pit,alpha_c,alpha_main,k_main)
# alpha_main -- alpha-contour for k-aggregated test
# k_main -- lag for alpha-aggregated test
n_a = length(alpha_c) # collection of alpha-contours
K_c=collect(1:n_a)
n_k = length(K_c) # collection of lags for alpha-aggregated test
Lambda_a = zeros(n_k,n_k)
L_a = zeros(n_k,1)
report1=zeros(n_a,2,n_k)
report2=zeros(1,2)
report3=zeros(1,2)
for k in 1:n_k
alpha_contour_hat = zeros(length(alpha_c),1)
PITk = [pit[1:(length(pit)-k)] pit[(1+k):length(pit)]]
Tk = size(PITk)[1]
Ind = zeros(Tk,n_a)
Omega_k = zeros(n_a,n_a)
for i in 1:n_a
Indi = 1*(PITk.<sqrt(alpha_c[i]))
Ind[:,i] = Indi[:,1].*Indi[:,2];
alpha_contour_hat[i] = sum(Ind[:,i])/Tk;
for j in 1:(i-1)
Omega_k[i,j] = alpha_c[j].*(1-alpha_c[i])+2*alpha_c[j]*alpha_c[i]^0.5.*(1-alpha_c[i]^0.5)
end
Omega_k = Omega_k + Omega_k'
Omega_k[i,i] = alpha_c[i].*(1-alpha_c[i])+2*alpha_c[i]^1.5.*(1-alpha_c[i]^0.5)
end
for j in 1:n_k
Lambda_a[j,k] = 4*alpha_main^1.5*(1-alpha_main^0.5)
end
Lambda_a[k,k] = alpha_main.*(1-alpha_main)+2*alpha_main^1.5.*(1-alpha_main^0.5)
C_k = sqrt(Tk)*(alpha_contour_hat-alpha_c)
t_c = C_k./sqrt.(alpha_c.*(1-alpha_c)+2*alpha_c.^1.5.*(1-alpha_c.^0.5))
C_k = C_k'inv(Omega_k)*C_k
Indi = 1*(PITk.<sqrt(alpha_main))
Ind = Indi[:,1].*Indi[:,2]
alpha_main_hat = sum(Ind)/Tk
L_a[k] = sqrt(Tk)*(alpha_main_hat-alpha_main)
# report individual k stats and p-vals
report1[:,:,k]=[t_c ccdf.(Chisq(1),(t_c.^2))]
# report alpha-aggregated
if k == k_main
report2=[C_k ccdf.(Chisq(n_a), C_k)]
end
end
# report lag-aggregated
L_a = L_a'inv(Lambda_a)*L_a;
report3=[L_a ccdf.(Chisq(n_k), L_a)]
return [report1,report2,report3]
end
## NUMERICAL INTEGRATION ROUTINES
function ComputeInt(r,rets,cuts,ext_probs,n)
a = 2*minimum(rets)
b = 2*maximum(rets)
x = cos.(pi*(2*collect(1:1:n)-1)./2./n)
S = 0
for i in 1:n
y=(x[i]+1)*(b-a)/2+a
CDFy = Interpol([2*minimum(rets);cuts;2*maximum(rets)],ext_probs,y)
S = S + ((CDFy-1*(y.>=r)).^2)*sqrt(1-x[i]^2)
end
return S*pi*(b-a)/2/n
end