-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmetrics.py
212 lines (170 loc) · 6.78 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
Metrics from ShapeInversion:https://github.com/junzhezhang/shape-inversion
"""
import numpy as np
import warnings
from numpy.linalg import norm
from scipy.stats import entropy
import torch
import math
from loss import *
import sys
from external.ChamferDistancePytorch.chamfer_python import distChamfer
try:
from external.emd.emd_module import emdModule
except:
print("NOTE: EMD not installed yet")
def MMD_batch(sample_pcs, ref_pcs, batch_size=50, normalize=True, sess=None, verbose=False, use_sqrt=False, use_EMD=False,device=None):
'''
compute MMD with CD / EMD between two point sets
same input and output as minimum_mathing_distance()
cuda implementation CD and EMD
input:
sample and ref_pcs can be np or tensor
(full data, like 1000 sample_pcs, and 1000 ref_pcs)
'''
n_ref, n_pc_points, pc_dim = ref_pcs.shape
n_sample, n_pc_points_s, pc_dim_s = sample_pcs.shape
if n_pc_points != n_pc_points_s or pc_dim != pc_dim_s:
raise ValueError('Incompatible size of point-clouds.')
dist_mat = torch.zeros(n_ref,n_sample)
# np to cuda tensor if start from np
if isinstance(sample_pcs, np.ndarray):
ref_pcs = torch.from_numpy(ref_pcs).cuda()
sample_pcs = torch.from_numpy(sample_pcs).cuda()
for r in range(n_ref):
for i in range(0,n_sample,batch_size):
if i+batch_size < n_sample:
sample_pcd_seg = sample_pcs[i:i+batch_size]
else:
sample_pcd_seg = sample_pcs[i:]
ref_pcd = ref_pcs[r].unsqueeze(0)
ref_pcd_e = ref_pcd.expand(sample_pcd_seg.shape[0],n_pc_points,pc_dim)
if use_EMD:
# EMD
# ref: https://github.com/Colin97/MSN-Point-Cloud-Completion/tree/master/emd
emd = emdModule()
dists, assigment = emd(sample_pcd_seg,ref_pcd_e, 0.005, 50)
dist = dists.mean(dim=1)
else:
# CD
dist1, dist2 , _, _ = distChamfer(ref_pcd_e, sample_pcd_seg)
dist = dist1.mean(axis=1) + dist2.mean(axis=1)
if i+batch_size < n_sample:
dist_mat[r,i:i+batch_size] = dist
else:
dist_mat[r,i:] = dist
mmd_all, _ = dist_mat.min(dim=1)
mmd_all = mmd_all.detach().cpu().numpy()
mmd = np.mean(mmd_all)
mmd = np.sqrt(mmd)
return mmd, mmd_all, dist_mat.cpu().numpy()
def directed_hausdorff(point_cloud1:torch.Tensor, point_cloud2:torch.Tensor, reduce_mean=True):
"""
# UHD from MPC: https://github.com/ChrisWu1997/Multimodal-Shape-Completion/blob/master/evaluation/completeness.py
:param point_cloud1: (B, 3, N)
:param point_cloud2: (B, 3, M)
:return: directed hausdorff distance, A -> B
"""
n_pts1 = point_cloud1.shape[2]
n_pts2 = point_cloud2.shape[2]
pc1 = point_cloud1.unsqueeze(3)
pc1 = pc1.repeat((1, 1, 1, n_pts2)) # (B, 3, N, M)
pc2 = point_cloud2.unsqueeze(2)
pc2 = pc2.repeat((1, 1, n_pts1, 1)) # (B, 3, N, M)
l2_dist = torch.sqrt(torch.sum((pc1 - pc2) ** 2, dim=1)) # (B, N, M)
shortest_dist, _ = torch.min(l2_dist, dim=2)
hausdorff_dist, _ = torch.max(shortest_dist, dim=1) # (B, )
if reduce_mean:
hausdorff_dist = torch.mean(hausdorff_dist)
return hausdorff_dist
def accuracy(P_recon, P_gt, thre=0.01):
"""
ACCURACY
P_gt: N x 3, np array
P_recon: N x 3, np array
"""
npoint = P_recon.shape[0]
P_recon_here = np.expand_dims(P_recon, axis=1) # N x 1 x 3
P_recon_here = np.tile(P_recon_here, (1, npoint, 1)) # N x N x 3
P_gt_here = np.tile(P_gt, (npoint,1))
P_gt_here = np.reshape(P_gt_here, (npoint, npoint, 3)) # N x N x 3
dists = np.linalg.norm(P_recon_here - P_gt_here, axis=-1) # N x N x 1
dists = np.squeeze(dists) # N x N
min_dists = np.amin(dists, axis=1) # 1 x N
avg_dist = np.mean(min_dists)
matched = min_dists[min_dists < thre]
fraction = matched.shape[0] / npoint
return fraction, avg_dist
def accuracy_cuda(P_recon, P_gt, thre=0.01):
"""
cuda version of accuracy
"""
npoint = P_recon.shape[0]
if isinstance(P_gt, np.ndarray):
P_recon = torch.from_numpy(P_recon).cuda().unsqueeze(0)
P_gt = torch.from_numpy(P_gt).cuda().unsqueeze(0)
else:
P_recon = P_recon.unsqueeze(0)
P_gt = P_gt.unsqueeze(0)
P_recon_here = P_recon.unsqueeze(2).repeat(1,1,npoint,1)
P_gt_here = P_gt.unsqueeze(1).repeat(1,npoint,1,1)
dist = P_recon_here.add(-P_gt_here)
dist_value = torch.norm(dist,dim=3).squeeze(0)
min_dists, _ = dist_value.min(axis=1)
avg_dist = min_dists.mean()
matched = min_dists[min_dists < thre]
fraction = matched.shape[0] / npoint
return fraction, avg_dist
def completeness(P_recon, P_gt, thre=0.01):
'''
COMPLETENESS
P_gt: N x 3, np array
P_recon: N x 3, np array
'''
npoint = P_recon.shape[0]
P_gt_here = np.expand_dims(P_gt, axis=1) # N x 1 x 3
P_gt_here = np.tile(P_gt_here, (1, npoint, 1)) # N x N x 3
P_recon_here = np.tile(P_recon, (npoint,1))
P_recon_here = np.reshape(P_recon_here, (npoint, npoint, 3)) # N x N x 3
dists = np.linalg.norm(P_gt_here - P_recon_here, axis=-1) # N x N x 1
dists = np.squeeze(dists) # N x N
min_dists = np.amin(dists, axis=1) # N x 1
avg_min_dist = np.mean(min_dists)
matched = min_dists[min_dists < thre]
fraction = matched.shape[0] / npoint
return fraction, avg_min_dist
def completeness_cuda(P_recon, P_gt, thre=0.01):
"""
completeness_cuda
"""
npoint = P_recon.shape[0]
if isinstance(P_gt, np.ndarray):
P_recon = torch.from_numpy(P_recon).cuda().unsqueeze(0)
P_gt = torch.from_numpy(P_gt).cuda().unsqueeze(0)
else:
P_recon = P_recon.unsqueeze(0)
P_gt = P_gt.unsqueeze(0)
P_recon_here = P_recon.unsqueeze(2).repeat(1,1,npoint,1)
P_gt_here = P_gt.unsqueeze(1).repeat(1,npoint,1,1)
dist = P_gt_here.add(-P_recon_here)
dist_value = torch.norm(dist,dim=3).squeeze(0)
min_dists, _ = dist_value.min(axis=0)
avg_dist = min_dists.mean()
matched = min_dists[min_dists < thre]
fraction = matched.shape[0] / npoint
return fraction, avg_dist
def compute_F1_score(precision, recall):
f = 2 * precision * recall / (precision + recall)
return f
def mutual_distance(pcd_ls):
if isinstance(pcd_ls[0],np.ndarray):
pcd_ls = [torch.from_numpy(itm).unsqueeze(0) for itm in pcd_ls]
sum_dist = 0
for i in range(len(pcd_ls)):
for j in range(i+1,len(pcd_ls)):
dist1, dist2 , _, _ = distChamfer(pcd_ls[i], pcd_ls[j])
dist = dist1.mean(axis=1) + dist2.mean(axis=1)
sum_dist += dist
mean_dist = sum_dist * 2 / (len(pcd_ls) - 1)
return mean_dist.item()*10000