-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
154 lines (113 loc) · 4.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import numpy as np
import argparse
import torch
from torch.utils.data import DataLoader
from model.net import FashionNet
from load_dataset import custom_dset, collate_fn, denorm
from focal_loss import *
from torch.autograd import Variable
import time
import cv2
import random
from tensorboardX import SummaryWriter
from utils import AverageMeter, AverageAcc
'''
We use the focal loss as cost function.
'''
writer = SummaryWriter(comment='_pretrain')
out_path = './data/show_validation'
if not os.path.isdir(out_path):
os.mkdir(out_path)
def eval_val(e, val_loader, net):
val_loss = AverageMeter()
accuracy = AverageAcc(val_loader.dataset.label_map)
label_map = val_loader.dataset.label_map
label_map = { v:k for k,v in label_map.items()}
# sometimes is useful to use different criterion for validation
crit = torch.nn.CrossEntropyLoss()
with torch.no_grad():
for it, (imgs, lables, img_ids) in enumerate(val_loader):
imgs = imgs.cuda()
labels = lables.cuda()
# run input through the network
preds = net(imgs)
loss = crit(preds, labels)
val_loss.update(loss.item(), imgs.size()[0])
accuracy.update(preds.data, labels.data, topk=(1, 5))
if it == 0:
# save to disk first batch of results for every epoch
for i,im in enumerate(imgs):
im = im.data.cpu().numpy()
im = denorm(im.transpose(1,2,0))[...,::-1]
_, inds = torch.max(preds, 1)
pred = label_map[inds[i].item()]
gt_label = label_map[labels[i].item()]
fname = 'Epoch:' + str(e + 1) + 'Gt:' + gt_label + 'Pred:' + pred + '.jpg'
cv2.imwrite(os.path.join(out_path, fname), im)
topk_dict, top1, top5 = accuracy()
return val_loss, top1
def get_weights(dset):
freq = dset.freq
len_dset = len(dset)
w = [1 - (freq[c]/len_dset) for c in dset.label_map.keys()]
return w
def train(epochs, net, train_loader, val_loader, optimizer,
save_step):
w = get_weights(train_loader.dataset)
# weights = torch.FloatTensor(w).cuda()
# crit = torch.nn.CrossEntropyLoss(weights)
crit = FocalLoss(gamma=2, alpha=w)
train_loss = AverageMeter()
best_top1 = 0.87
top1 = 0
for e in range(epochs):
print('*'* 100)
print('Epoch {} / {}'.format(e + 1, epochs))
net.train()
# training stage
for it, (img, labels, img_ids) in enumerate(train_loader):
optimizer.zero_grad()
img = Variable(img.cuda())
labels = Variable(labels.cuda())
# run input through the network
preds = net(img)
# apply loss function
loss = crit(preds, labels)
loss.backward()
optimizer.step()
train_loss.update(loss.item(), img.size()[0])
if (it + 1) % 30 == 0:
net.eval()
val_loss, top1 = eval_val(e, val_loader, net)
print('Epoch: {} Training loss: {} Validation loss: {} Step (it/tot): {}/{}'.format((e + 1), round(train_loss.avg, 3), round(val_loss.avg, 3), it, len(train_loader)))
tot_iter = (e*len(train_loader) + it)
writer.add_scalars('losses',{ 'train_loss': train_loss.avg, 'validation_loss': val_loss.avg}, tot_iter)
net.train()
#if (e + 1) % save_step == 0:
if top1 > best_top1:
best_top1 = top1
if not os.path.exists('./checkpoints'):
os.mkdir('./checkpoints')
state = {'net': net.state_dict(), 'label_map': train_loader.dataset.label_map }
torch.save(state, './checkpoints/pnet_{}_{}.pth'.format((e + 1), round(top1, 2)))
def main():
# Load dataset
trainset = custom_dset('train_pretrain')
valset = custom_dset('val_pretrain')
num_classes = len(trainset.label_map)
print('Lenght of the training dataset: {}'.format(len(trainset)))
print('Lenght of the validation dataset: {}'.format(len(valset)))
print('List of {} classes for training: {}'.format(num_classes, [k for k,_ in trainset.label_map.items()]))
train_loader = DataLoader(trainset, batch_size=28, shuffle=True, collate_fn=collate_fn, num_workers=4)
val_loader = DataLoader(valset, batch_size=28, shuffle=False, collate_fn=collate_fn, num_workers=4)
# FashionNet model
net = FashionNet(num_classes)
net = net.cuda()
# optimizer
optimizer = torch.optim.Adam(net.parameters(), lr=1e-4)
train(epochs=11, net=net, train_loader=train_loader, val_loader=val_loader, optimizer=optimizer,
save_step=1)
writer.close()
if __name__ == "__main__":
main()