-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathu_train.py
165 lines (149 loc) · 6.76 KB
/
u_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
"""
import json
import os
import torch.backends.cudnn as cudnn
import torch.nn.parallel
from dataloader.data_utils import get_class_weights
from functions import train_one_epoch, train_out_one_epoch, test, set_optimizer, save_checkpoint
from models.loss import WL2SP, UMSE
from utils import Logger, mkdir_p
from utils.args import args_for_train_tl
# get all the input variables
args = args_for_train_tl()
state = {k: v for k, v in args._get_kwargs()}
if not os.path.isdir(args.checkpoint):
print("==> Creating checkpoint folder")
mkdir_p(args.checkpoint)
# save all the arguments
args_save_path = args.checkpoint if args.resume == '' else os.path.dirname(args.resume)
with open(os.path.join(args_save_path, 'experiment_args.txt'), 'w') as f:
json.dump(args.__dict__, f, indent=2)
# writer = SummaryWriter(os.path.join(args_save_path, "tensorboard"))
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
use_cuda = torch.cuda.is_available()
# set parameters
best_acc = 0 # best test accuracy
do_save_checkpoint = True
start_epoch = args.start_epoch # start from epoch 0 or last checkpoint epoch
############################################
# Create and Load Model
############################################
from models.models import get_model
model, image_size = get_model(args, num_classes=200, use_pretrained=False, train=True)
image_size = image_size
model = model.cuda()
model = torch.nn.DataParallel(model)
cudnn.benchmark = True
print(' Total params: %.4fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))
optimizer = set_optimizer(model, args)
# optimizer = torch.optim.RMSprop(model.parameters(), lr=args.lr, alpha=0.9, weight_decay=0.0, momentum=0.0, centered=False)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, 0.94, last_epoch=-1)
# scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=0.0045, max_lr=0.045, step_size_up=5,
# step_size_down=5, cycle_momentum=False, base_momentum=0.0,
# max_momentum=0.0)
# pre-trained weights for loss function
pretrained_weights = {}
for n, m in model.named_modules():
if "conv" in n:
try:
pretrained_weights[n] = m.weight
except:
pass
cls_num_list, per_cls_weights = get_class_weights(0.99)
criterion = WL2SP(class_weights=per_cls_weights, pretrained_weights=pretrained_weights)
##############################################
# Load Dataset
##############################################
print('==> Preparing dataset')
from dataloader.data import get_trainval_data
trainloader, validloader = get_trainval_data(batch_size=args.train_batch, val_batch_size=64, image_size=image_size)
##############################################
# Initialize Model
#############################################
title = '{}-{}-{}-{}'.format(args.dataset, args.model, args.depth, args.norm)
# Resume
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
args.checkpoint = os.path.dirname(args.resume)
checkpoint = torch.load(args.resume)
best_acc = checkpoint['best_acc']
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title, resume=True)
else:
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.', 'Train Acc.5',
'Valid Acc.5'])
#############################################
# Train and Validate
#############################################
lrs = [0.0001, 0.001, 0.05, 0.01, 0.005, 0.01, 0.001, 0.01, 0.02]
eps = [30, 70, 100, 130, 160, 190, 210, 240, 270]
ep2lr = dict(zip(eps, lrs))
# for epoch in range(start_epoch, 1):
#
# # else:
# # state['lr'] = adjust_learning_rate(state['lr'], optimizer, epoch, args.gamma, args.schedule)
# print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, state['lr']))
# train_loss, train_acc, train_acc5 = train_one_epoch(trainloader, model, criterion, optimizer, use_cuda=use_cuda)
# valid_loss, valid_acc, valid_acc5 = test(validloader, model, criterion, use_cuda=use_cuda)
# logger.append([state['lr'], train_loss, valid_loss, train_acc, valid_acc, train_acc5, valid_acc5])
# # log_tensorboard(writer, epoch, train_loss, train_acc, train_acc5, valid_loss, valid_acc, valid_acc5)
# if epoch%4==0:
# scheduler.step()
# # save model ap
# is_best = valid_acc > best_acc
# best_loss = max(valid_acc, best_acc)
# best_acc = max(valid_acc, best_acc)
# if do_save_checkpoint:
# save_checkpoint({
# 'epoch': epoch + 1,
# 'state_dict': model.state_dict(),
# 'acc': valid_acc,
# 'best_acc': best_acc,
# 'optimizer' : optimizer.state_dict(),
# }, is_best, checkpoint=args.checkpoint)
###########################################
## Unsupervised Training
###########################################
print('==> Preparing Out dataset')
from dataloader.data import get_outdist_data
outdistloader = get_outdist_data(batch_size=32, image_size=image_size)
mse_criterion = UMSE()
for epoch in range(start_epoch, args.epochs):
# else:
# state['lr'] = adjust_learning_rate(state['lr'], optimizer, epoch, args.gamma, args.schedule)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, scheduler.get_lr()[0]))
train_loss, train_acc, train_acc5 = train_one_epoch(trainloader, model, criterion, optimizer, use_cuda=use_cuda)
valid_loss, valid_acc, valid_acc5 = test(validloader, model, criterion, use_cuda=use_cuda)
if epoch % 100 == 0:
# freeze last layer
model.module.last_linear.weight.requires_grad = False
model.module.last_linear.bias.requires_grad = False
out_loss = train_out_one_epoch(outdistloader, model, mse_criterion, optimizer, use_cuda=use_cuda)
model.module.last_linear.weight.requires_grad = True
model.module.last_linear.bias.requires_grad = True
valid_loss, valid_acc, valid_acc5 = test(validloader, model, criterion, use_cuda=use_cuda)
logger.append([state['lr'], train_loss, valid_loss, train_acc, valid_acc, train_acc5, valid_acc5])
# log_tensorboard(writer, epoch, train_loss, train_acc, train_acc5, valid_loss, valid_acc, valid_acc5)
if epoch % 4 == 0:
scheduler.step()
# save model ap
is_best = valid_acc > best_acc
best_loss = max(valid_acc, best_acc)
best_acc = max(valid_acc, best_acc)
if do_save_checkpoint:
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'acc': valid_acc,
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
}, is_best, checkpoint=args.checkpoint)
logger.close()
print('Best acc:', best_acc)