-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
288 lines (251 loc) · 11.3 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import shutil
import time
import torch
import torch.nn.parallel
import torch.optim as optim
from utils import Bar, AverageMeter, accuracy
from PIL import ImageFile
import utils
import numpy as np
import pandas as pd
import torch.nn as nn
import json
ImageFile.LOAD_TRUNCATED_IMAGES = True
def train_one_epoch(trainloader, model, criterion, optimizer, use_cuda=True, test_flag=False):
"""
trains the model on trainloader data for one epoch
:param trainloader: pytroch dataloader that gives one batch of data at each iteration
:type trainloader: pytorch dataloader
:param model: model to be trained
:type model: pytorch model class
:param criterion: loss function defined in pytorch
:type criterion: pytorch class
:param optimizer: gradient descent based optimzer to update model weights
:type optimizer: pytorch class
:param use_cuda: flag to set to use cuda or not
:type use_cuda: boolean
:param test_flag: flag to on the test mode, it will run function on one epoch only
:type test_flag: boolean
:return: average values of loss, top1 accuracy top5 accuracy
:rtype: floats
"""
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
bar = Bar('Processing', max=len(trainloader))
for batch_idx, (inputs, targets) in enumerate(trainloader):
# for test case only
if test_flag is True and batch_idx > 1:
break
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs = inputs.cuda()
targets = targets.cuda()
# compute gradient and do SGD step
optimizer.zero_grad()
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets, model)
# print(torch.argmax(targets.data).shape)
# measure accuracy and record loss
# prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
try:
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
except:
# print(targets.shape, outputs.shape)
targets = torch.argmax(targets, dim=1)
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
#
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: ' \
'{loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(batch=batch_idx + 1,
size=len(trainloader),
data=data_time.avg,bt=batch_time.avg,
total=bar.elapsed_td, eta=bar.eta_td,
loss=losses.avg, top1=top1.avg,
top5=top5.avg,)
bar.next()
bar.finish()
return losses.avg, top1.avg, top5.avg
def train_out_one_epoch(trainloader, model, criterion, optimizer, use_cuda=True, test_flag=False):
"""
trains the model on trainloader data for one epoch
:param trainloader: pytroch dataloader that gives one batch of data at each iteration
:type trainloader: pytorch dataloader
:param model: model to be trained
:type model: pytorch model class
:param criterion: loss function defined in pytorch
:type criterion: pytorch class
:param optimizer: gradient descent based optimzer to update model weights
:type optimizer: pytorch class
:param use_cuda: flag to set to use cuda or not
:type use_cuda: boolean
:param test_flag: flag to on the test mode, it will run function on one epoch only
:type test_flag: boolean
:return: average values of loss, top1 accuracy top5 accuracy
:rtype: floats
"""
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
bar = Bar('Processing', max=len(trainloader))
for batch_idx, inputs in enumerate(trainloader):
# for test case only
if test_flag is True and batch_idx > 1:
break
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs = inputs.cuda()
# compute gradient and do SGD step
optimizer.zero_grad()
# compute output
outputs = model(inputs)
loss = criterion(outputs, model)
# measure accuracy and record loss
# prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
# top1.update(prec1.item(), inputs.size(0))
# top5.update(prec5.item(), inputs.size(0))
#
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: ' \
'{loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(batch=batch_idx + 1,
size=len(trainloader),
data=data_time.avg,bt=batch_time.avg,
total=bar.elapsed_td, eta=bar.eta_td,
loss=losses.avg, top1=0,
top5=0,)
bar.next()
bar.finish()
return losses.avg
def test(testloader, model, criterion, use_cuda=True, test_flag=False):
"""
checks performance of the model
:param testloader: pytroch dataloader that gives one batch of data at each iteration
:type testloader: pytorch dataloader
:param model: model to be trained
:type model: pytorch model class
:param criterion: loss function defined in pytorch
:type criterion: pytorch class
:param use_cuda: whether to put inputs, targets on cuda or not
:type use_cuda: boolean
:param test_flag: flag to on the test mode, it will run function on one epoch only
:type test_flag: boolean
:return: average values of loss, top1 accuracy top5 accuracy
:rtype: floats
"""
# initialization of telemetery
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# testing
model.eval() # switch to test mode
bar = Bar('Processing', max=len(testloader))
for batch_idx, (inputs, targets) in enumerate(testloader):
# for test case only
if test_flag and batch_idx > 1:
break
data_time.update(time.time() - end)
if use_cuda:
inputs = inputs.cuda()
targets = targets.cuda()
# compute output
with torch.no_grad():
outputs = model(inputs)
loss = criterion(outputs, targets, model)
# measure accuracy and record loss
prec1, prec5 = utils.accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} |' \
' Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(testloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg)
bar.next()
bar.finish()
return losses.avg, top1.avg, top5.avg
def set_optimizer(model, args):
"""
sets optimizer according to ars
:param model: deep learning model
:type model: pytroch class
:param args: arguments passed
:type args:
:return:
:rtype:
"""
params = [{'params': [p for p in model.parameters() if not getattr(p, 'bin_gate', False)]},
{'params': [p for p in model.parameters() if getattr(p, 'bin_gate', False)],
'lr': args.lr * args.bin_lr, 'weight_decay': 0}]
optimizer = optim.SGD(params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
return optimizer
def save_checkpoint(state, is_best, checkpoint='checkpoint', filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
def adjust_learning_rate(state, optimizer, epoch, gamma, schedule):
if epoch in schedule:
state *= gamma
for param_group in optimizer.param_groups:
param_group['lr'] *= gamma
return state
def make_final_submission(Idxs, preds, submission_file_path):
final_pred1 = np.argsort(preds, axis=1)[:, ::-1]
final_pred = final_pred1[:, 0:5]
sub = []
for num, item in enumerate(final_pred):
lbs = ""
for i in item:
lbs+=str(i)+" "
sub.append([Idxs[num], lbs])
pd_sub = pd.DataFrame(sub, columns=["Id", "Category"])
pd_sub.to_csv(submission_file_path, index=False)
def log_tensorboard(writer, n_iter, train_loss, train_acc, train_acc5,val_loss, val_acc, val_acc5):
writer.add_scalar('train_loss', train_loss, n_iter)
writer.add_scalar('val_loss', val_loss, n_iter)
writer.add_scalar('train_acc', train_acc, n_iter)
writer.add_scalar('val_acc', val_acc, n_iter)
writer.add_scalar('train_acc5', train_acc5, n_iter)
writer.add_scalar('val_acc5', val_acc5, n_iter)