-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsuper_resolution.py
98 lines (71 loc) · 3.2 KB
/
super_resolution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import argparse
import pickle
import os
import imageio
from tqdm import tqdm
import numpy as np
import tensorflow as tf
import dnnlib
import dnnlib.tflib as tflib
import config
from perceptual_model import PerceptualModel
STYLEGAN_MODEL_URL = 'https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ'
def optimize_latent_codes(args):
tflib.init_tf()
with dnnlib.util.open_url(STYLEGAN_MODEL_URL, cache_dir=config.cache_dir) as f:
_G, _D, Gs = pickle.load(f)
latent_code = tf.get_variable(
name='latent_code', shape=(1, 18, 512), dtype='float32', initializer=tf.initializers.zeros()
)
generated_img = Gs.components.synthesis.get_output_for(latent_code, randomize_noise=False)
generated_img = tf.transpose(generated_img, [0, 2, 3, 1])
generated_img = ((generated_img + 1) / 2) * 255
generated_img = tf.image.resize_images(generated_img, tuple(args.hr_img_size), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
generated_lr_img = tf.image.resize_images(generated_img, tuple(args.lr_img_size), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
generated_img_for_display = tf.saturate_cast(generated_img, tf.uint8)
lr_img = tf.placeholder(tf.float32, [None, args.lr_img_size[0], args.lr_img_size[1], 3])
perceptual_model = PerceptualModel(img_size=args.lr_img_size)
generated_img_features = perceptual_model(generated_lr_img)
target_img_features = perceptual_model(lr_img)
loss_op = tf.reduce_mean(tf.abs(generated_img_features - target_img_features))
optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
train_op = optimizer.minimize(loss_op, var_list=[latent_code])
sess = tf.get_default_session()
img_names = sorted(os.listdir(args.lr_imgs_dir))
for img_name in img_names:
img = imageio.imread(os.path.join(args.lr_imgs_dir, img_name))
sess.run(tf.variables_initializer([latent_code] + optimizer.variables()))
progress_bar_iterator = tqdm(
iterable=range(args.total_iterations),
bar_format='{desc}: {percentage:3.0f}% |{bar}| {n_fmt}/{total_fmt}{postfix}',
desc=img_name
)
for i in progress_bar_iterator:
loss, _ = sess.run(
fetches=[loss_op, train_op],
feed_dict={
lr_img: img[np.newaxis, ...]
}
)
progress_bar_iterator.set_postfix_str('loss=%.2f' % loss)
hr_imgs, latent_codes = sess.run(
fetches=[generated_img_for_display, latent_code],
feed_dict={
lr_img: img[np.newaxis, ...]
}
)
imageio.imwrite(os.path.join(args.hr_imgs_dir, img_name), hr_imgs[0])
np.savez(file=os.path.join(args.latents_dir, img_name + '.npz'), latent_code=latent_codes[0])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--lr-imgs-dir', type=str, required=True)
parser.add_argument('--hr-imgs-dir', type=str, required=True)
parser.add_argument('--latents-dir', type=str, required=True)
parser.add_argument('--lr-img-size', type=int, nargs=2, default=(128, 128))
parser.add_argument('--hr-img-size', type=int, nargs=2, default=(1024, 1024))
parser.add_argument('--learning-rate', type=float, default=1e-3)
parser.add_argument('--total-iterations', type=int, default=1000)
args = parser.parse_args()
os.makedirs(args.hr_imgs_dir, exist_ok=True)
os.makedirs(args.latents_dir, exist_ok=True)
optimize_latent_codes(args)