-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsource_only_train.py
146 lines (109 loc) · 5.19 KB
/
source_only_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy as np
import datetime
import os
import sys
import random
import pickle
import builtins
import wandb
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
import dataset.transforms as T
import warnings
warnings.filterwarnings("ignore")
from parse_args import create_parser
from models.model import SourceOnlyModel
from dataset.get_datasets import get_data, get_weak_transforms, get_strong_transforms, get_dataloader
from utils.utils import set_seed, adjust_learning_rate, save_checkpoint
from trainers import source_only_trainer, validation
def main(args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.seed != -1:
set_seed(args.seed)
best_target_acc = 0.
best_source_acc = 0.
print("\n############################################################################\n")
print("Experimental Configs: ", args)
print("\n############################################################################\n")
print("==> Using Domain Adaptation Mode: {} [{}]".format(args.adaptation_mode, args.modality))
# Save and log directory creation
result_dir = os.path.join(args.save_dir, '_'.join(
(args.source_dataset, args.target_dataset, args.adaptation_mode, args.modality)))
log_dir = os.path.join(result_dir, 'logs')
save_dir = os.path.join(result_dir, 'checkpoints')
os.makedirs(result_dir, exist_ok=True)
os.makedirs(log_dir, exist_ok=True)
os.makedirs(save_dir, exist_ok=True)
run_name = "-".join(
[args.adaptation_mode, args.source_dataset, args.target_dataset]
)
wandb.login()
run = wandb.init(
project = "video-domain-adaptation",
config = args,
dir = log_dir,
entity = 'avijit9',
name = run_name
)
# Dataloader creation
weak_transform_train = get_weak_transforms(args, 'train')
strong_transform_train = get_strong_transforms(args, 'train')
transform_val = get_weak_transforms(args, 'val')
print("==> Constructing the source dataloaders..")
source_train_dataset = get_data([weak_transform_train, strong_transform_train], args, 'train', args.source_dataset)
source_val_dataset = get_data(transform_val, args, 'val', args.source_dataset)
source_train_loader = get_dataloader(args, 'train', source_train_dataset)
source_val_loader = get_dataloader(args, 'val', source_val_dataset)
print("==> Constructing the target dataloaders..")
target_val_dataset = get_data(transform_val, args, 'val', args.target_dataset)
target_val_loader = get_dataloader(args, 'val', target_val_dataset)
# Create the model
print("==> Loading the I3D backbone")
model = SourceOnlyModel(args)
model = torch.nn.parallel.DataParallel(model, device_ids = list(range(args.gpus))).to(device)
# define the loss function and optimizers here.
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
# define the optimizer
optimizer = optim.SGD(model.parameters(), args.lr,
weight_decay = args.weight_decay, momentum = args.momentum)
# start training
for epoch in range(0, args.num_epochs):
adjust_learning_rate(optimizer, epoch, args)
train_epoch_acc, train_epoch_loss = source_only_trainer.train_one_epoch(source_train_loader, \
model, criterion, optimizer, epoch, args, device)
if run is not None:
run.log({"source/loss_supervised": train_epoch_loss, "epoch": epoch})
run.log({"source/accuracy": train_epoch_acc, "epoch": epoch})
source_val_epoch_acc, source_val_epoch_loss = validation.validate(source_val_loader, model, \
epoch, args, device)
target_val_epoch_acc, target_val_epoch_loss = validation.validate(target_val_loader, model, \
epoch, args, device)
if run is not None:
run.log({"source/val_accuracy": source_val_epoch_acc, "epoch": epoch})
run.log({"source/val_loss": source_val_epoch_loss, "epoch": epoch})
run.log({"target/val_accuracy": target_val_epoch_acc, "epoch": epoch})
run.log({"target/val_loss": target_val_epoch_loss, "epoch": epoch})
if source_val_epoch_acc > best_source_acc:
best_source_acc = source_val_epoch_acc
best_target_acc = target_val_epoch_acc
print("Found source best acc {} at epoch {}.".format(source_val_epoch_acc, epoch))
print("Found target acc {} at epoch {}.".format(target_val_epoch_acc, epoch))
is_source_best = True
else:
is_source_best = False
save_checkpoint({
'epoch': epoch + 1,
'arch': 'i3d',
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_target_val_acc': best_target_acc,
}, is_source_best, checkpoint_dir = save_dir, epoch = epoch + 1)
print("==> Training done!")
print("==> [Source] Best accuracy {}".format(best_source_acc))
print("==> [Target] Best accuracy {}".format(best_target_acc))
if __name__ == "__main__":
parser = create_parser()
args = parser.parse_args()
main(args)