-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_args.py
59 lines (50 loc) · 4.27 KB
/
parse_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import argparse
import yaml
def create_parser():
parser = argparse.ArgumentParser()
# Configs related to the dataset and adaptation mode (most important ones)
parser.add_argument('--source_dataset', type=str, help='Name of the source dataset')
parser.add_argument('--target_dataset', type=str, help='Name of the target dataset')
parser.add_argument('--adaptation_mode', type=str, help='Name of the adaptation types',
choices = ['source_only', 'SLT'])
parser.add_argument('--modality', type=str, help='Name of the adaptation types',
choices = ['RGB', 'Flow', 'Joint'])
# Configs related to the model training
parser.add_argument('--batch_size', type=int, default = 1, help='Numbers of videos in a mini-batch')
parser.add_argument('--num_workers', type=int, default = 4, help='Number of subprocesses for dataloading')
parser.add_argument('--num_classes', type=int, default = 12, help='Number of total classes in the dataset')
parser.add_argument('--opt', type=str, default = 'sgd', help='Name of optimizer')
parser.add_argument('--lr', type=float, default = 0.01, help='Learning rate')
parser.add_argument('--momentum', type=float, default = 0.9, help='Momentum value in optimizer')
parser.add_argument('--weight_decay', type=float, default = 1e-4, help='Weight decay')
parser.add_argument('--num_epochs', type=int, default = 1, help='Total number of epochs')
parser.add_argument('--seed', type=int, default = 9, help='seed for deterministic results')
parser.add_argument('--print_freq', type=int, default = 10, help='print frequency')
parser.add_argument('--pretrained', type=str, default = None, help='pretrained-weights path')
parser.add_argument('--ckpt_path', type=str, default = None, help='checkpoint path')
parser.add_argument('--milestones', type=int, nargs='+', help='Epoch values to change learning rate')
parser.add_argument('--dropout', type=float, default = 0.5, help='Learning rate')
parser.add_argument('--clip_length', type=int, default = 16, help='Number of frames within a clip')
parser.add_argument('--gpu', default=None, type=int)
parser.add_argument('--gamma', type=float, default = 0.1, help='gamma factor for decreasing the learning rate')
parser.add_argument('--sampling_rate', type=int, default = 1, help='frame sampling rate')
# Data and log directories
parser.add_argument('--data_path', type=str, help='Path to train and test split files')
parser.add_argument('--split_path', type=str, help='Path to train and test split files')
parser.add_argument('--save_dir', type=str, help='Path to results directory')
parser.add_argument('--comment', type=str, default = "", help='Path to results directory')
parser.add_argument('--gpus', type=int, default = 1, help='number of gpus to be used')
# Pseudo-labeling related arguments
parser.add_argument('--pretrained_weight_path', type=str, default = None, help='pretrained path for the model')
parser.add_argument('--source_pretrained_weight_path', type=str, default = None, help='pretrained path for the model')
parser.add_argument('--adapted_pretrained_weight_path', type=str, default = None, help='pretrained path for the model')
parser.add_argument('--pseudo_label_path', type = str, default = None, help = "path to the pseudo-labels generated")
parser.add_argument('--r', type=float, default = 1., help='split ratio to select the noisy and clean samples')
parser.add_argument('--tau', type=float, default = 0.9, help='confidence threshold for co-training')
parser.add_argument('--use-ema', action='store_true', default=False, help='use EMA model')
parser.add_argument('--ema-decay', type=float, default = 0.99, help='decay variable for EMA')
# adding argument specific to the EPic-kitchen
parser.add_argument('--base_lr', type=float, default = 0.1, help='Learning rate')
parser.add_argument('--warmup_start_lr', type=float, default = 0.01, help='Learning rate')
parser.add_argument('--warmup_epochs', type=int, default = 34, help='Total number of epochs')
return parser