forked from ydwen/opensphere
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunner.py
200 lines (165 loc) · 6.79 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import os.path as osp
import time
import yaml
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import get_world_size, get_rank
from utils import IterLoader, LoggerBuffer
from torch import distributed as dist
from torch.nn.utils import clip_grad_norm_
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
class IterRunner():
def __init__(self, config, train_loader, val_loaders, model):
self.config = config
self.train_loader = IterLoader(train_loader)
self.val_loaders = val_loaders
self.model = model
self.class_freq = train_loader.dataset.class_freq
self.rank = get_rank()
self.world_size = get_world_size()
# meta variables of a new runner
proj_cfg = config['project']
self._iter = 0
self._max_iters = [max(cfg['scheduler']['milestones'])
for cfg in config['model'].values()]
self._max_iters = max(self._max_iters)
self.val_intvl = proj_cfg['val_intvl']
self.save_iters = proj_cfg['save_iters']
if self.rank != 0:
return
# project directory
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
proj_dir = proj_cfg['proj_dir']
proj_dir = osp.join(proj_dir, timestamp)
if not osp.exists(proj_dir):
os.makedirs(proj_dir)
proj_cfg['proj_dir'] = proj_dir
print('')
print('The training log and models are saved to ' + proj_dir)
print('')
self.proj_dir = proj_dir
# model directory
self.model_dir = osp.join(proj_dir, proj_cfg['model_dir'])
if not osp.exists(self.model_dir):
os.makedirs(self.model_dir)
proj_cfg['model_dir'] = self.model_dir
# logger
train_log_cfg = proj_cfg['train_log']
train_log_cfg['path'] = osp.join(
proj_dir, train_log_cfg['path'])
self.train_buffer = LoggerBuffer(name='train', **train_log_cfg)
val_log_cfg = proj_cfg['val_log']
val_log_cfg['path'] = osp.join(
proj_dir, val_log_cfg['path'])
self.val_buffer = LoggerBuffer(name='val', **val_log_cfg)
#to avoid duplicated logging info in PyTorch >1.9
#import logging
#self.train_buffer.logger.setLevel(logging.WARNING)
#self.val_buffer.logger.setLevel(logging.WARNING)
#for name in logging.root.manager.loggerDict:
# logger = logging.getLogger(name)
# print(name, logger, logger.handlers)
#xxxx
# save config to proj_dir
config_path = osp.join(proj_dir, proj_cfg['cfg_fname'])
with open(config_path, 'w') as f:
yaml.dump(config, f, sort_keys=False, default_flow_style=None)
def set_model(self, test_mode):
for module in self.model:
if test_mode:
self.model[module]['net'].eval()
else:
self.model[module]['net'].train()
self.model[module]['optimizer'].zero_grad()
def update_model(self):
lrs = []
for module in self.model:
self.model[module]['optimizer'].step()
self.model[module]['scheduler'].step()
lrs.extend(self.model[module]['scheduler'].get_last_lr())
if getattr(self, 'current_lrs', None) != lrs and self.rank == 0:
self.current_lrs = lrs
lr_msg = ', '.join(
['{:3.5f}'.format(lr) for lr in self.current_lrs])
self.train_buffer.logger.info(
'Lrs are changed to {}'.format(lr_msg))
def save_model(self):
for module in self.model:
model_name = '{}_{}.pth'.format(str(module), str(self._iter))
model_path = osp.join(self.model_dir, model_name)
torch.save(self.model[module]['net'].state_dict(), model_path)
def train(self):
data, labels = next(self.train_loader)
data, labels = data.to(self.rank), labels.to(self.rank)
class_freq = self.class_freq.to(self.rank)
# forward
self.set_model(test_mode=False)
feats = self.model['backbone']['net'](data)
loss = self.model['head']['net'](feats, labels, class_freq)
# backward
loss.backward()
b_norm = self.model['backbone']['clip_grad_norm']
h_norm = self.model['head']['clip_grad_norm']
if b_norm < 0. or h_norm < 0.:
raise ValueError(
'the clip_grad_norm should be positive. ({:3.4f}, {:3.4f})'.format(b_norm, h_norm))
b_grad = clip_grad_norm_(
self.model['backbone']['net'].parameters(),
max_norm=b_norm, norm_type=2)
h_grad = clip_grad_norm_(
self.model['head']['net'].parameters(),
max_norm=h_norm, norm_type=2)
# update model
self.update_model()
if self.rank == 0:
# logging and update meters
magnitude = torch.norm(feats, 2, 1)
msg = {
'Iter': self._iter,
'Loss': loss.item(),
'Mag_mean': magnitude.mean().item(),
'Mag_std': magnitude.std().item(),
'bkb_grad': b_grad,
'head_grad': h_grad,
}
self.train_buffer.update(msg)
torch.cuda.empty_cache()
@torch.no_grad()
def val(self):
# switch to test mode
self.set_model(test_mode=True)
msg = {'Iter': self._iter}
for val_loader in self.val_loaders:
# meta info
dataset = val_loader.dataset
# create a placeholder `feats`,
# compute _feats in different GPUs and collect
dim = self.config['model']['backbone']['net']['out_channel']
feats = torch.zeros(
[len(dataset), dim], dtype=torch.float32).to(self.rank)
for data, indices in val_loader:
data = data.to(self.rank)
_feats = self.model['backbone']['net'](data)
data = torch.flip(data, [3])
_feats += self.model['backbone']['net'](data)
feats[indices, :] = _feats
dist.all_reduce(feats, op=dist.ReduceOp.SUM)
results = dataset.evaluate(feats.cpu())
results = dict(results)
metric = val_loader.dataset.metrics[0]
msg[dataset.name] = results[metric]
if self.rank == 0:
self.val_buffer.update(msg)
def run(self):
while self._iter <= self._max_iters:
# train step
if self._iter % self.val_intvl == 0 and self._iter > 0:
self.val()
if self._iter in self.save_iters and self.rank == 0:
self.save_model()
self.train()
self._iter += 1