Skip to content

Commit 50e677d

Browse files
committed
renamed build to build_tracking
1 parent 37ca618 commit 50e677d

File tree

2 files changed

+23
-28
lines changed

2 files changed

+23
-28
lines changed

docs/p/notebooks/response_matrices.ipynb

+6-17
Original file line numberDiff line numberDiff line change
@@ -216,7 +216,7 @@
216216
"\n",
217217
"The response matrix may be built by three methods:\n",
218218
"\n",
219-
"1. {py:meth}`~.ResponseMatrix.build` computes the matrix using tracking.\n",
219+
"1. {py:meth}`~.ResponseMatrix.build_tracking` computes the matrix using tracking.\n",
220220
"2. {py:meth}`~.OrbitResponseMatrix.build_analytical` analytically computes the matrix using formulas\n",
221221
" from [^1].\n",
222222
"3. {py:meth}`~.ResponseMatrix.load` loads data from a file containing previously\n",
@@ -240,7 +240,7 @@
240240
},
241241
"outputs": [],
242242
"source": [
243-
"resp_h.build(use_mp=True)"
243+
"resp_h.build_tracking(use_mp=True)"
244244
]
245245
},
246246
{
@@ -314,8 +314,8 @@
314314
"name": "stdout",
315315
"output_type": "stream",
316316
"text": [
317-
"max/min Observables: 4.601144216665912\n",
318-
"max/min Variables: 2.5659993714555895\n"
317+
"max/min Observables: 4.601144216666178\n",
318+
"max/min Variables: 2.5659993714548004\n"
319319
]
320320
},
321321
{
@@ -382,7 +382,7 @@
382382
},
383383
{
384384
"cell_type": "code",
385-
"execution_count": 10,
385+
"execution_count": null,
386386
"id": "bee36f70-ccab-4f5e-a746-c4d86cdbb3fc",
387387
"metadata": {
388388
"editable": true,
@@ -391,18 +391,7 @@
391391
},
392392
"tags": []
393393
},
394-
"outputs": [
395-
{
396-
"data": {
397-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIO1JREFUeJzt3Q2Ql1WhP/DDS4BvLCEJkgKWb21esWAhshdUioxItLrcarqo9+J0XRyL6g7OHUFnKrjVZSzboqmUpiZFLKkkDYcsyjAWzLI2SRow7lVAbvFeIOzvP+fc/267vO7i/vjteX6fz8zj7vP8zv6e8xzW3e+el+fpUSqVSgEAICM9K10BAIDOEmAAgOwIMABAdgQYACA7AgwAkB0BBgDIjgADAGRHgAEAsiPAAADZEWCg4EaMGBGuvfba0F2MHz8+bTnqbm0J1UyAgUw99dRT4b3vfW8YPnx46NevX3jlK18Z3va2t4U777yz0lUDKLve5T8F0NV+8YtfhMsuuywMGzYsTJ8+PQwZMiRs3LgxPP744+Hzn/98uOmmm1rLrl27NvTs6W8VoFgEGMjQpz71qVBTUxMaGxvDgAED2r22ZcuWdvt9+/YNRbV///7Q3Nwc+vTpU+mqACeYP8sgQ3/84x/Da1/72kPCS3TGGWccdd7GwoULQ48ePcJjjz0WZs6cGV7xileEU045JVx99dXhhRdeaPe1MRzcdtttYejQoeHkk09OvT5NTU2HvGcsE9/zYC3n2rBhwxGvZd++fWH27Nlh1KhRKZTFurz5zW8Ojz76aLty8T3ie33uc58Ld9xxR3j1q1+dwlmsz+FcdNFFqb4Hi9cUh9vi8FuL+J5vfOMbw+mnnx5OOumkVJf777//iHU+3ut+6KGH0rXFazzttNPCpEmTwu9+97t2ZTZt2hSuu+66cNZZZ6XrO/PMM8NVV1111DaEaqQHBjIU572sXLky/Pa3v02/qI9HHGZ6+ctfHubMmZN+OcZQMGPGjLBo0aLWMrfcckv4zGc+EyZPnhwmTpwYfv3rX6ePf/vb37rsWnbs2BG+9rWvhfe///1pOGznzp3h61//ejrPqlWrwiWXXNKu/N13353Of8MNN6Rf8AMHDjzs+06dOjUFjBgI4hBbi5///OfhueeeC//0T//UeiwOu7373e8OH/zgB1Oguvfee8P73ve+8OCDD6aQ0RW++c1vhmnTpqXr+s///M+wZ8+e8OUvfzm86U1vCr/61a9SKIze8573pFAT/33isdij9sgjj4Q//elPrWWAEEIJyM6yZctKvXr1Stu4ceNK//7v/1760Y9+VNq3b98hZYcPH16aNm1a6/7dd99div/rT5gwodTc3Nx6/KMf/Wh6v23btqX9TZs2lXr37l2aMmVKu/e77bbb0te3fc85c+akYwdrOdf69etbj731rW9NW4v9+/eX9u7d2+7r/vKXv5QGDx5cuv7661uPxfeI79W/f//Sli1bjtlGa9euTeXvvPPOdsdvvPHG0qmnnlras2dP67G2n0exHS+66KLS5ZdfftS27Oh179y5szRgwIDS9OnT25WLbVxTU9N6PF53/LrPfvazx7w+qHaGkCBDcbVR7IGJvQaxVyT2ksS/7OPQyPe///0OvUfswWg7/BGHNg4cOBCeffbZtL98+fI0x+TGG29s93VtJwh3hV69erXOYYnDO3/+85/TeUePHh2eeOKJQ8rHHoo47HUs559/fuq9adujFK8vDg3FHqU4VNSi7ed/+ctfwvbt21N7HO78xyP2oGzbti31Mm3durV1i9c+duzY1uGyWI/YFj/5yU9SPYAjE2AgU3V1deG73/1u+kUXh1ricE8cfolzO440L6StuIKprTicFLX84mwJMueee267cnHIpqVsV/nGN74RLr744rQcPM5DiQFl6dKlKUgc7Jxzzunw+8ZhpDjX53/+53/SfgwGcUgmHm8rDhW94Q1vSOeP1xfPH4d3Dnf+4/HMM8+kj5dffnl677bbsmXLWidexyGxOLwU58oMHjw4vOUtb0nhNA6DAe0JMJC5+Bd7DDOf/vSn0y/dF198MSxevPiYXxf/+j+cUimOYnTO4SaytvR4HMu3vvWtNCE4TsqNc18efvjh1GMRf9nHHpmDte0tOZYYVOL1tLTHfffdlyYKv+Md72gt87Of/Sz1ZMXw8qUvfSn88Ic/TOf/wAc+cMy26Oh1t1xHnAcT3/vg7Xvf+15r2Y985CPhD3/4Q5g7d26q06233hpe85rXpHkywN+ZxAsFEoddoueff75LJgpH69ata9fr8b//+7+HDG+09MjEYZK2K6NaenGOJg7pvOpVr0q9SW0DQZxc/FLFeo8ZMyYNI8UJyvEcU6ZMabe0/Dvf+U4KCj/60Y/aHY+ThY+lo9cdw1nLCrEJEyYc831j+Y997GNpi703cSjsv/7rv1LYA/6PHhjIUJwzcbjegdh7EF1wwQUv+RxXXHFF6N27d+rVaeuLX/ziIWVbfkGvWLGi9dju3bvT0FBHe4LaXs8vf/nLNMenK8RemHiDv7vuuivNOzl4+CiePwantr0mcVXWkiVLjvneHb3uOD+pf//+qZcs9pAdrGX5elyZdPAKr3iOuOR67969Hb5mqAZ6YCBDcSJt/GUX791y4YUXpqW/8e68sachLrWN9xF5qeIcjJtvvjn95R+HWOKwS5wwHOdnDBo0qF1vydvf/vY0p+Zf/uVfwic+8YkUCmJgiHM84vLfo3nXu96VekbitcQly+vXrw8LFiwItbW1YdeuXS/5Ov7xH/8xfPzjH09bnN9ycA9IPOf8+fPT9cVhozgfpaGhIc39+c1vfnPU9+7odcfwEoPghz70ofD6178+LeFuKRPn+lx66aUpGMahoxgcY53j9ccA+cADD4TNmze3W/YNWEYNWXrooYfSEuMLL7wwLQnu06dP6dxzzy3ddNNNpc2bN3doGXVjY2O7co8++mg6Hj+2XeJ86623loYMGVI66aST0rLi3//+96XTTz+99OEPf7jd169Zs6Y0duzYVJdhw4aV5s+f36Fl1HEp96c//elUz759+5Ze97rXlR588MFU53js4GXUx7PE+NJLL01f+6//+q+Hff3rX/966bzzzkvnj20a6324JdIHt2VnrruljSdOnJiWTvfr16/06le/unTttdeWVq9enV7funVrqb6+PtXhlFNOSeXie993332dvmYouh7xP5UOUUA+4nyPOPfjk5/8ZPiP//iPSlcHqFLmwABH9Ne//vWQY/GOvdH48eMrUCOA/2MODHBEcU5NfK7PO9/5znDqqaem2/Dfc889ae5HnLcBUCkCDHBE8eZycSJpvJlafGZRy8TeOHwEUEnmwAAA2TEHBgDIjgADAGSncHNg4jNHnnvuuXTnyiM9pwQA6F7ijJb4QNqhQ4eGnj17Vl+AieHl7LPPrnQ1AIDjsHHjxnDWWWdVX4CJPS8tDRBv3w0AdH9xpWPsgGj5PV41ASY+uyRuLQ9ki+FFgAGAvHR0+kfhllHHBFdTUxO2b98uwABAQX9/W4UEAGRHgAEAsiPAAADZEWAAgOwUJsDEFUi1tbWhrq6u0lUBAMrMKiQAoOKsQgIACk+AAQCyI8AAANkRYACA7AgwAEB2BBgAIDuFfRp1uYyYtfSIr22YN6nDZQCA41eYHpj6+vrQ1NQUGhsbK10VAKDMChNgAIDqIcAAANkRYACA7AgwAEB2BBgAIDsCDACQHQEGAMhOYQJMvIldbW1tqKurq3RVAIAyK0yAcSM7AKgehQkwAED1EGAAgOwIMABAdgQYACA7AgwAkB0BBgDIjgADAGRHgAEAsiPAAADZEWAAgOwIMABAdgoTYDzMEQCqR2ECjIc5AkD1KEyAAQCqhwADAGRHgAEAsiPAAADZEWAAgOwIMABAdgQYACA7AgwAkB0BBgDIjgADAGRHgAEAstO70hWoViNmLT3q6xvmTTphdQGA3OiBAQCyI8AAANkRYACA7BQmwDQ0NITa2tpQV1dX6aoAAGVWmABTX18fmpqaQmNjY6WrAgCUWWECDABQPQQYACA7AgwAkB0BBgDIjgADAGTHowS6MY8bAIDD0wMDAGRHgAEAsiPAAADZEWAAgOwIMABAdgQYACA7AgwAkB0BBgDIjgADAGRHgAEAsiPAAADZEWAAgOwIMABAdgQYACA7AgwAkB0BBgDITrcLMBs3bgzjx48PtbW14eKLLw6LFy+udJUAgG6md+hmevfuHe64445wySWXhE2bNoVRo0aFd77zneGUU06pdNUAgG6i2wWYM888M23RkCFDwqBBg8Kf//xnAQYAOP4hpBUrVoTJkyeHoUOHhh49eoQlS5YcUqahoSGMGDEi9OvXL4wdOzasWrUqHI81a9aEAwcOhLPPPvu4vh4AKKZO98Ds3r07jBw5Mlx//fXhmmuuOeT1RYsWhZkzZ4YFCxak8BKHgyZOnBjWrl0bzjjjjFQmDg/t37//kK9dtmxZCkZR7HX553/+5/DVr371qPXZu3dv2lrs2LGjs5cEABQ9wFx55ZVpO5L58+eH6dOnh+uuuy7txyCzdOnScNddd4VZs2alY08++eRRzxEDyZQpU1L5N77xjUctO3fu3HD77bd39jIAgIx16Sqkffv2pWGfCRMm/P0EPXum/ZUrV3boPUqlUrj22mvD5ZdfHj70oQ8ds/wtt9wStm/f3rrFVUwAQLF1aYDZunVrmrMyePDgdsfjflxR1BGPPfZYGoaKc2viUFPcnnrqqSOW79u3b+jfv3+7DQAotm63CulNb3pTaG5urnQ1AIBq6YGJS5579eoVNm/e3O543I9LogEAul2A6dOnT7rx3PLly1uPxd6UuD9u3LhQTnHpdrx7b11dXVnPAwBkOIS0a9eusG7dutb99evXp1VFAwcODMOGDUtLqKdNmxZGjx4dxowZk5ZRx6XXLauSyqW+vj5tcRl1TU1NWc8FAGQWYFavXh0uu+yy1v0YWKIYWhYuXBimTp0aXnjhhTB79uw0cTdOwn344YcPmdgLAHDCAkx80GJc6nw0M2bMSBsAQFU8jRoAoGoCjEm8AFA9ChNg4gTepqam0NjYWOmqAABlVpgAAwBUDwEGAMiOAAMAZEeAAQCyU5gAYxUSAFSPwgQYq5AAoHoUJsAAANVDgAEAsiPAAADZEWAAgOwUJsBYhQQA1aMwAcYqJACoHr0rXQFeuhGzlh7xtQ3zJp3QugDAiVCYHhgAoHoIMABAdgQYACA7AgwAkB0BBgDITmECjPvAAED1KEyAcR8YAKgehQkwAED1EGAAgOwIMABAdgQYACA7AgwAkB0BBgDIjgADAGSnMAHGjewAoHoUJsC4kR0AVI/CBBgAoHoIMABAdgQYACA7AgwAkB0BBgDIjgADAGRHgAEAsiPAAADZEWAAgOwIMABAdgQYACA7hQkwHuYIANWjMAHGwxwBoHoUJsAAANVDgAEAsiPAAADZEWAAgOwIMABAdgQYACA7AgwAkJ3ela4AJ8aIWUuP+NqGeZOOWaZtOQCoND0wAEB2BBgAIDsCDACQHQEGAMiOAAMAZEeAAQCyI8AAANkpTIBpaGgItbW1oa6urtJVAQDKrDABpr6+PjQ1NYXGxsZKVwUAKLPCBBgAoHoIMABAdgQYACA7AgwAkB0BBgDIjgADAGRHgAEAsiPAAADZEWAAgOwIMABAdgQYACA7AgwAkB0BBgDIjgADAGRHgAEAsiPAAADZEWAAgOwIMABAdgQYACA7AgwAkB0BBgDIjgADAGSnd+hmtm3bFiZMmBD279+ftptvvjlMnz690tXi/xsxa+lRX98wb9Ixy7WUAYDCBJjTTjstrFixIpx88slh9+7d4aKLLgrXXHNNOP300ytdNQCgm+h2Q0i9evVK4SXau3dvKJVKaQMAOO4AE3tHJk+eHIYOHRp69OgRlixZckiZhoaGMGLEiNCvX78wduzYsGrVqk4PI40cOTKcddZZ4ROf+EQYNGhQZ6sJABRYpwNMHNaJ4SKGlMNZtGhRmDlzZpgzZ0544oknUtmJEyeGLVu2tJa55JJL0tDQwdtzzz2XXh8wYED49a9/HdavXx++/e1vh82bNx+xPrGXZseOHe02AKDYOj0H5sorr0zbkcyfPz9Nur3uuuvS/oIFC8LSpUvDXXfdFWbNmpWOPfnkkx061+DBg1MA+tnPfhbe+973HrbM3Llzw+23397ZywAAMtalc2D27dsX1qxZk1YRtZ6gZ8+0v3Llyg69R+xt2blzZ/p8+/btacjqggsuOGL5W265JZVr2TZu3NgFVwIAVM0qpK1bt4YDBw6knpO24v7TTz/dofd49tlnww033NA6efemm24K//AP/3DE8n379k0bAFA9ut0y6jFjxnR4iAkAqE5dOoQUVwvFZdAHT7qN+0OGDOnKUwEAVaxLe2D69OkTRo0aFZYvXx6mTJmSjjU3N6f9GTNmhHKKq6LiFoewyIO79QJwwgLMrl27wrp161r341LnOOQzcODAMGzYsLSEetq0aWH06NFpOOiOO+5IS69bViWVS319fdriMuqampqyngsAyCzArF69Olx22WWt+zGwRDG0LFy4MEydOjW88MILYfbs2WHTpk3pni8PP/zwIRN7AQBOWIAZP378MW/tH4eLyj1kBABUr273LCQAgKoJMHECb21tbairq6t0VQCAMitMgIkTeJuamkJjY2OlqwIAlFlhAgwAUD0EGAAgOwIMAJAdAQYAyE5hAoxVSABQPbrd06iPl0cJVN/zkiLPTAKoToXpgQEAqkdhemCoXh3tpfH0a4DiEGCgjY6EHMNaAJUnwEAZ6BUCKK/CzIGxCgkAqkdhAoxnIQFA9ShMgAEAqocAAwBkR4ABALIjwAAA2RFgAIDsCDAAQHYKE2DcBwYAqkdhAoz7wABA9ShMgAEAqocAAwBkR4ABALIjwAAA2RFgAIDsCDAAQHYEGAAgO4UJMG5kBwDVozABxo3sAKB6FCbAAADVQ4ABALIjwAAA2RFgAIDsCDAAQHYEGAAgOwIMAJAdAQYAyI4AAwBkR4ABALIjwAAA2SlMgPEwRwCoHoUJMB7mCADVozABBgCoHgIMAJAdAQYAyI4AAwBkR4ABALIjwAAA2RFgAIDsCDAAQHYEGAAgOwIMAJAdAQYAyI4AAwBkR4ABALLTu9IVAI5uxKylR3xtw7xJJ7QuAN2FHhgAIDuFCTANDQ2htrY21NXVVboqAECZFSbA1NfXh6amptDY2FjpqgAAZVaYAAMAVA8BBgDIjgADAGRHgAEAsiPAAADZEWAAgOwIMABAdgQYACA7AgwAkB0Pc4QC8MBHoNoIMFAljhZy2gYdYQjIgSEkACA7emCATutIL81LLdPZ9wKqix4YACA7AgwAkB0BBgDIjgADAGRHgAEAsiPAAADZEWAAgOwIMABAdgQYACA73TbA7NmzJwwfPjx8/OMfr3RVAIBuptsGmE996lPhDW94Q6WrAQB0Q90ywDzzzDPh6aefDldeeWWlqwIAFCHArFixIkyePDkMHTo09OjRIyxZsuSQMg0NDWHEiBGhX79+YezYsWHVqlWdOkccNpo7d25nqwYAVIlOP4169+7dYeTIkeH6668P11xzzSGvL1q0KMycOTMsWLAghZc77rgjTJw4MaxduzacccYZqcwll1wS9u/ff8jXLlu2LDQ2Nobzzz8/bb/4xS+OWZ+9e/emrcWOHTs6e0kAQNEDTBzWOdrQzvz588P06dPDddddl/ZjkFm6dGm46667wqxZs9KxJ5988ohf//jjj4d77703LF68OOzatSu8+OKLoX///mH27NmHLR97am6//fbOXgYAkLEunQOzb9++sGbNmjBhwoS/n6Bnz7S/cuXKDr1HDCQbN24MGzZsCJ/73OdSGDpSeIluueWWsH379tYtfi0AUGyd7oE5mq1bt4YDBw6EwYMHtzse9+Ok3HLo27dv2gCA6tGlAaarXXvttZWuAgBQ9CGkQYMGhV69eoXNmze3Ox73hwwZ0pWnAgCqWJcGmD59+oRRo0aF5cuXtx5rbm5O++PGjQvlFJdu19bWhrq6urKeBwDIcAgprgxat25d6/769evTqqKBAweGYcOGpSXU06ZNC6NHjw5jxoxJy6jj0uuWVUnlUl9fn7a4jLqmpqas5wIAMgswq1evDpdddlnrfgwsUQwtCxcuDFOnTg0vvPBCWjm0adOmdM+Xhx9++JCJvQAAJyzAjB8/PpRKpaOWmTFjRtoAAKrmWUgAAFURYEziBYDqUZgAEyfwNjU1pWcpAQDFVpgAAwBUDwEGAMiOAAMAZKcwAcYkXgCoHoUJMCbxAkD1KEyAAQCqhwADAGRHgAEAsiPAAADFf5gjQHc0YtbSI762Yd6kLinTthxQWb2LtIw6bgcOHKh0VYCC62jIOZGhSvCi2hRmCMkyagCoHoUJMABA9RBgAIDsCDAAQHYEGAAgOwIMAJAdAQYAyE5hAky8B0xtbW2oq6urdFUAgDIrTIBxHxgAqB6FCTAAQPUQYACA7AgwAEB2BBgAIDsCDACQHQEGAMiOAAMAZKcwAcaN7ACgehQmwLiRHQBUj8IEGACgeggwAEB2BBgAIDu9K10BAE6cEbOWHvG1DfMmdbgMVJoeGAAgOwIMAJAdAQYAyI4AAwBkR4ABALJjFRIAnXa0lUotq5U6UuZY72XVE0eiBwYAyE5hAoyHOQJA9ShMgPEwRwCoHoUJMABA9RBgAIDsCDAAQHYsowag27PUmoPpgQEAsqMHBoBC6Mqb69H96YEBALIjwAAA2RFgAIDsCDAAQHYEGAAgOwIMAJAdAQYAyI4AAwBkR4ABALJTmADT0NAQamtrQ11dXaWrAgCUWWEeJVBfX5+2HTt2hJqamkpXB4CCPzzSAyYrqzABBgC6GyGnfAQYAKigjj5gsqt6hUa8xDJty1VSYebAAADVQ4ABALIjwAAA2RFgAIDsCDAAQHYEGAAgOwIMAJAdAQYAyI4AAwBkR4ABALIjwAAA2RFgAIDsCDAAQHYEGAAgOwIMAJCd3qFgSqVS+rhjx46yvH/z3j1HfK3lnC+1TEu5jpRRJ3XqynqrU37/vuqUb51y//+gq7W8Z8vv8WPpUepoyUz893//dzj77LMrXQ0A4Dhs3LgxnHXWWdUXYJqbm8Nzzz0XTjvttNCjR4+ynScmxRiUYkP379+/bOfh77T5iaW9TzxtfmJp7+7V3jGO7Ny5MwwdOjT07Nmz+oaQ4kV3JLl1lfiP4Bv/xNLmJ5b2PvG0+YmlvbtPe9fU1HT4fUziBQCyI8AAANkRYI5T3759w5w5c9JHTgxtfmJp7xNPm59Y2jvv9i7cJF4AoPj0wAAA2RFgAIDsCDAAQHYEGAAgOwIMAJAdAeY4NTQ0hBEjRoR+/fqFsWPHhlWrVlW6SoWxYsWKMHny5HQ76fg4iCVLlrR7PS6cmz17djjzzDPDSSedFCZMmBCeeeaZitU3d3Pnzg11dXXp8RtnnHFGmDJlSli7dm27Mn/7299CfX19OP3008Opp54a3vOe94TNmzdXrM45+/KXvxwuvvji1ruRjhs3Ljz00EOtr2vr8po3b176ufKRj3yk9Zg271q33XZbauO224UXXtjl7S3AHIdFixaFmTNnpvXsTzzxRBg5cmSYOHFi2LJlS6WrVgi7d+9ObRpD4uF85jOfCV/4whfCggULwi9/+ctwyimnpPaP/1PQeT/96U/TD5PHH388PPLII+HFF18Mb3/729O/Q4uPfvSj4Qc/+EFYvHhxKh+fN3bNNddUtN65io86ib9E16xZE1avXh0uv/zycNVVV4Xf/e536XVtXT6NjY3hK1/5SgqQbWnzrvfa1742PP/8863bz3/+865v73gfGDpnzJgxpfr6+tb9AwcOlIYOHVqaO3duRetVRPFb9IEHHmjdb25uLg0ZMqT02c9+tvXYtm3bSn379i3dc889FaplsWzZsiW1+09/+tPW9n3Zy15WWrx4cWuZ3//+96nMypUrK1jT4nj5y19e+trXvqaty2jnzp2l8847r/TII4+U3vrWt5ZuvvnmdFybd705c+aURo4cedjXurK99cB00r59+9JfTnHYou0DJOP+ypUrK1q3arB+/fqwadOmdu0fH/4Vh/G0f9fYvn17+jhw4MD0MX6/x16Ztm0eu4OHDRumzV+iAwcOhHvvvTf1dsWhJG1dPrGXcdKkSe3aNtLm5RGH9eM0gFe96lXhgx/8YPjTn/7U5e1duKdRl9vWrVvTD53Bgwe3Ox73n3766YrVq1rE8BIdrv1bXuP4NTc3p7kBl156abjooovSsdiuffr0CQMGDGhXVpsfv6eeeioFljjsGecAPPDAA6G2tjY8+eST2roMYkiMw/1xCOlgvr+7XvyDcuHCheGCCy5Iw0e33357ePOb3xx++9vfdml7CzBAu79S4w+ZtuPVdL34gz2Gldjbdf/994dp06aluQB0vY0bN4abb745ze+Kiy4ovyuvvLL18zjfKAaa4cOHh/vuuy8tvOgqhpA6adCgQaFXr16HzJiO+0OGDKlYvapFSxtr/643Y8aM8OCDD4ZHH300TTRtEds1Dp1u27atXXltfvziX6DnnntuGDVqVFoFFietf/7zn9fWZRCHLOICi9e//vWhd+/eaYthMS4EiJ/Hv/y1eXnF3pbzzz8/rFu3rku/xwWY4/jBE3/oLF++vF23e9yPXcKU1znnnJO+ydu2/44dO9JqJO1/fOJc6Rhe4jDGj3/849TGbcXv95e97GXt2jwus45j2tq8a8SfIXv37tXWZXDFFVekIbvY49WyjR49Os3LaPlcm5fXrl27wh//+Md064su/R5/ydONq9C9996bVr0sXLiw1NTUVLrhhhtKAwYMKG3atKnSVSvMaoFf/epXaYvfovPnz0+fP/vss+n1efPmpfb+3ve+V/rNb35Tuuqqq0rnnHNO6a9//Wulq56lf/u3fyvV1NSUfvKTn5Sef/751m3Pnj2tZT784Q+Xhg0bVvrxj39cWr16dWncuHFpo/NmzZqVVnitX78+ff/G/R49epSWLVuWXtfW5dd2FVKkzbvWxz72sfTzJH6PP/bYY6UJEyaUBg0alFY4dmV7CzDH6c4770z/AH369EnLqh9//PFKV6kwHn300RRcDt6mTZvWupT61ltvLQ0ePDgFySuuuKK0du3aSlc7W4dr67jdfffdrWViOLzxxhvTct+TTz65dPXVV6eQQ+ddf/31peHDh6efHa94xSvS929LeIm09YkPMNq8a02dOrV05plnpu/xV77ylWl/3bp1Xd7ePeJ/ur7DCACgfMyBAQCyI8AAANkRYACA7AgwAEB2BBgAIDsCDACQHQEGAMiOAAMAZEeAAQCyI8AAANkRYACAkJv/BxLuC7L12x1DAAAAAElFTkSuQmCC",
398-
"text/plain": [
399-
"<Figure size 640x480 with 1 Axes>"
400-
]
401-
},
402-
"metadata": {},
403-
"output_type": "display_data"
404-
}
405-
],
394+
"outputs": [],
406395
"source": [
407396
"resp_h.plot_singular_values()"
408397
]

pyat/at/latticetools/response_matrix.py

+17-11
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@
4848
4949
The response matrix may be built by three methods:
5050
51-
1. :py:meth:`~ResponseMatrix.build` computes the matrix using tracking
51+
1. :py:meth:`~ResponseMatrix.build_tracking` computes the matrix using tracking
5252
(any :py:class:`ResponseMatrix`)
5353
2. :py:meth:`~OrbitResponseMatrix.build_analytical` analytically computes the matrix
5454
using formulas from [1]_ (:py:class:`OrbitResponseMatrix` only)
@@ -210,12 +210,16 @@ def __init__(self):
210210
self._varmask = None
211211

212212
@abc.abstractmethod
213-
def build(self) -> None:
213+
def build_tracking(self) -> None:
214214
"""Build the response matrix."""
215215
nobs, nvar = self._response.shape
216216
self._obsmask = np.ones(nobs, dtype=bool)
217217
self._varmask = np.ones(nvar, dtype=bool)
218218

219+
def build_analytical(self) -> None:
220+
"""Build the response matrix."""
221+
raise NotImplementedError("build_analytical not implemented for self.__class__.__name__")
222+
219223
@property
220224
@abc.abstractmethod
221225
def varweights(self): ...
@@ -255,7 +259,9 @@ def response(self):
255259
"""Response matrix."""
256260
resp = self._response
257261
if resp is None:
258-
raise AtError("No response matrix yet: run build() or load() first")
262+
raise AtError(
263+
"No response matrix yet: run build_tracking() or load() first"
264+
)
259265
return resp
260266

261267
@property
@@ -302,7 +308,7 @@ def save(self, file) -> None:
302308
be appended to the filename if it does not already have one.
303309
"""
304310
if self._response is None:
305-
raise AtError("No response matrix: run build() first")
311+
raise AtError("No response matrix: run build_tracking() or load() first")
306312
np.save(file, self._response)
307313

308314
def load(self, file) -> None:
@@ -417,7 +423,7 @@ def correct(
417423
self.variables.increment(corr, ring=ring)
418424
return sumcorr
419425

420-
def build(
426+
def build_tracking(
421427
self,
422428
use_mp: bool = False,
423429
pool_size: int | None = None,
@@ -481,14 +487,14 @@ def build(
481487
results = _resp(ring.deepcopy(), self.observables, self.variables, **kwargs)
482488

483489
self._response = np.stack(results, axis=-1)
484-
super().build()
490+
super().build_tracking()
485491

486492
def exclude_obs(self, obsname: str, excluded: Refpts) -> None:
487493
# noinspection PyUnresolvedReferences
488494
r"""Exclude items from :py:class:`.Observable`\ s.
489495
490496
After excluding observation points, the matrix must be rebuilt with
491-
:py:meth:`build`.
497+
:py:meth:`build_tracking`.
492498
493499
Args:
494500
obsname: :py:class:`.Observable` name.
@@ -583,7 +589,7 @@ def steerer(ik, delta):
583589

584590
def set_norm():
585591
bpm = LocalOpticsObservable(bpmrefs, "beta", plane=pl)
586-
sts = LocalOpticsObservable(ids, "beta", plane=pl)
592+
sts = LocalOpticsObservable(steerrefs, "beta", plane=pl)
587593
dsp = LocalOpticsObservable(bpmrefs, "dispersion", plane=2 * pl)
588594
tun = GlobalOpticsObservable("tune", plane=pl)
589595
obs = ObservableList([bpm, sts, dsp, tun])
@@ -602,6 +608,9 @@ def set_norm():
602608

603609
pl = plane_(plane, "index")
604610
plcode = plane_(plane, "code")
611+
ids = ring.get_uint32_index(steerrefs)
612+
nbsteers = len(ids)
613+
deltas = np.broadcast_to(steerdelta, nbsteers)
605614
if steersum and stsumweight is None or cavrefs and cavdelta is None:
606615
cavd, stsw = set_norm()
607616

@@ -625,9 +634,6 @@ def set_norm():
625634
observables.append(sumobs)
626635

627636
# Variables
628-
ids = ring.get_uint32_index(steerrefs)
629-
nbsteers = len(ids)
630-
deltas = np.broadcast_to(steerdelta, nbsteers)
631637
variables = VariableList(steerer(ik, delta) for ik, delta in zip(ids, deltas))
632638
if cavrefs is not None:
633639
active = (el.longt_motion for el in ring.select(cavrefs))

0 commit comments

Comments
 (0)