-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
335 lines (294 loc) · 14.1 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
'''
Inference code for CVMN
Modified from DETR (https://github.com/facebookresearch/detr)
'''
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import datasets
import util.misc as utils
from datasets import build_dataset, get_coco_api_from_dataset
from models import build_model
import torchvision.transforms as T
import matplotlib.pyplot as plt
import os
from PIL import Image
import math
import torch.nn.functional as F
import json
from scipy.optimize import linear_sum_assignment
import pycocotools.mask as mask_util
from util.misc import nested_tensor_from_exp
import yaml
# from .tokenizer import Tokenizer
import numpy as np
from gensim.models import KeyedVectors
from bert_embedding import BertEmbedding
import csv
import h5py
import cv2
import clip
# os.environ["CUDA_VISIBLE_DEVICES"] = '1'
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=150, type=int)
parser.add_argument('--lr_drop', default=100, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
parser.add_argument('--model_path', type=str, default='output/checkpoint.pth',
help="Path to the model weights.")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=4, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=4, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=384, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_frames', default=36, type=int,
help="Number of frames")
parser.add_argument('--num_ins', default=1, type=int,
help="Number of instances")
parser.add_argument('--num_queries', default=36, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# * Segmentation
parser.add_argument('--masks', action='store_false',
help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
# dataset parameters
parser.add_argument('--img_path', default='data/rvos/train/JPEGImages/')
parser.add_argument('--ann_path', default='data/rvos/ann/instances_test_sub.json')
parser.add_argument('--save_path', default='')
parser.add_argument('--dataset_file', default='ytvos')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='output_ytvos',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
#parser.add_argument('--eval', action='store_true')
parser.add_argument('--eval', action='store_false')
parser.add_argument('--num_workers', default=0, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
CLASSES=['person','giant_panda','lizard','parrot','skateboard','sedan','ape',
'dog','snake','monkey','hand','rabbit','duck','cat','cow','fish',
'train','horse','turtle','bear','motorbike','giraffe','leopard',
'fox','deer','owl','surfboard','airplane','truck','zebra','tiger',
'elephant','snowboard','boat','shark','mouse','frog','eagle','earless_seal',
'tennis_racket']
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933],
[0.494, 0.000, 0.556], [0.494, 0.000, 0.000], [0.000, 0.745, 0.000],
[0.700, 0.300, 0.600]]
transform = T.Compose([
T.Resize(300),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b.cpu() * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
def computeIoU(pred_seg, gd_seg):
I = np.sum(np.logical_and(pred_seg, gd_seg))
U = np.sum(np.logical_or(pred_seg, gd_seg))
return I, U
def main(args):
device = torch.device(args.device)
# device = torch.device('cpu')
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
num_frames = args.num_frames
num_ins = args.num_ins
# evaluation variables
cum_I, cum_U = 0, 0
eval_seg_iou_list = [.5, .6, .7, .8, .9]
seg_correct = np.zeros(len(eval_seg_iou_list), dtype=np.int32)
seg_total = 0
mean_IoU = []
header = 'Test:'
with torch.no_grad():
model, criterion, postprocessors = build_model(args)
model.to(device)
state_dict = torch.load(args.model_path)['model']
# print(state_dict.keys())
model.load_state_dict(state_dict, strict=False)
paths = {
"videoset_path": "data/a2d/Release/videoset.csv",
"annotation_path": "data/a2d/Release/Annotations",
"sample_path": "data/a2d/a2d_annotation_info.txt",
}
word2vec = KeyedVectors.load_word2vec_format(paths['vocab_path'], binary=True)
col_path = os.path.join(paths['annotation_path'], 'col')
max_num_words = paths['max_num_words']
# import pickle
# with open('cnt.pkl', 'rb') as fp:
# id2idx = pickle.load(fp)
bert_embedding = BertEmbedding()
selector, preprocess = clip.load("RN50", device=device)
test_videos = {}
with open(paths['videoset_path'], newline='') as fp:
reader = csv.reader(fp, delimiter=',')
for row in reader:
frame_idx = list(map(lambda x: int(x[:-4]) - 1, os.listdir(os.path.join(col_path, row[0]))))
frame_idx = sorted(frame_idx)
video_info = {
'label': int(row[1]),
'timestamps': [row[2], row[3]],
'size': [int(row[4]), int(row[5])], # [height, width]
'num_frames': int(row[6]),
'num_annotations': int(row[7]),
'frame_idx': frame_idx,
}
if int(row[8]) == 1:
test_videos[row[0]] = video_info
test_samples = []
test_videos_set = set()
with open(paths['sample_path'], newline='') as fp:
reader = csv.DictReader(fp)
from collections import defaultdict
video2frame = defaultdict(list)
rows = []
for row in reader:
rows.append(row)
video2frame[(row['video_id'], row['query'])].append(row['frame_idx'])
for row in rows:
if row['video_id'] in test_videos:
test_samples.append([row['video_id'], row['instance_id'], row['frame_idx'], row['query']])
test_videos_set.add(row['video_id'])
iou = 0
print('test:', len(test_samples))
for i in range(len(test_samples)):
video_id, instance_id, frame_idx, query = test_samples[i]
query = query.lower()
frame_idx = int(frame_idx)
h5_path = os.path.join('../lzj/data/a2d/a2d_annotation_with_instances', video_id, '%05d.h5' % (frame_idx + 1))
if not os.path.exists(h5_path):
h5_path = os.path.join('../lzj/data/a2d/a2d_annotation_with_instances', video_id, '%05d.h5' % (24 + 1))
frame_path = os.path.join('../lzj/data/a2d/Release/pngs320H', video_id)
frames = list(map(lambda x: os.path.join(frame_path, x), sorted(os.listdir(frame_path))))
assert len(frames) == test_videos[video_id]['num_frames']
all_frames = []
mid_frame = (args.num_frames-1)//2
for j in range(args.num_frames):
all_frames.append(frame_idx-mid_frame+j)
for j in range(len(all_frames)):
if all_frames[j] < 0:
all_frames[j] = 0
elif all_frames[j] >= len(frames):
all_frames[j] = len(frames) - 1
all_frames = np.asarray(frames)[all_frames]
img_set = []
for j in all_frames:
im = Image.open(j)
img_set.append(transform(im).unsqueeze(0).cuda())
img=torch.cat(img_set,0)
exp = bert_embedding([query])
exp = np.asarray(exp[0][1])
exp = nested_tensor_from_exp([exp]).to(device)
exp = exp.tensors
outputs = model(img, exp)
masks = outputs['pred_masks'][0][mid_frame]
pred_masks =F.interpolate(masks.reshape(1,num_ins,masks.shape[-2],masks.shape[-1]),(im.size[1],im.size[0]),mode="bilinear").sigmoid().cpu().detach().numpy()>0.5
with h5py.File(h5_path, mode='r') as fp:
instance = np.asarray(fp['instance'])
all_masks = np.asarray(fp['reMask'])
if len(all_masks.shape) == 3 and instance.shape[0] != all_masks.shape[0]:
print(video_id, frame_idx + 1, instance.shape, all_masks.shape)
assert len(all_masks.shape) == 2 or len(all_masks.shape) == 3
if len(all_masks.shape) == 2:
mask = all_masks[np.newaxis]
else:
instance_id = int(instance_id)
idx = np.where(instance == instance_id)[0][0]
mask = all_masks[idx]
mask = mask[np.newaxis]
assert len(mask.shape) == 3
assert mask.shape[0] > 0
fine_gt_mask = np.transpose(np.asarray(mask), (0, 2, 1))[0]
I, U = computeIoU(pred_masks[0][0], fine_gt_mask)
if U == 0:
this_iou = 0.0
else:
this_iou = I*1.0/U
mean_IoU.append(this_iou)
cum_I += I
cum_U += U
for n_eval_iou in range(len(eval_seg_iou_list)):
eval_seg_iou = eval_seg_iou_list[n_eval_iou]
seg_correct[n_eval_iou] += (this_iou >= eval_seg_iou)
seg_total += 1
print(args.model_path)
mean_IoU = np.array(mean_IoU)
mIoU = np.mean(mean_IoU)
print('Final results:')
print('Mean IoU is %.2f\n' % (mIoU*100.))
results_str = ''
for n_eval_iou in range(len(eval_seg_iou_list)):
results_str += ' precision@%s = %.2f\n' % \
(str(eval_seg_iou_list[n_eval_iou]), seg_correct[n_eval_iou] * 100. / seg_total)
results_str += ' overall IoU = %.2f\n' % (cum_I * 100. / cum_U)
print(results_str)
if __name__ == '__main__':
parser = argparse.ArgumentParser('CVMN inference script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)