-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathlib.rs
777 lines (702 loc) · 26.2 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
//! This crate can be used to parse Python source code into an Abstract
//! Syntax Tree.
//!
//! ## Overview
//!
//! The process by which source code is parsed into an AST can be broken down
//! into two general stages: [lexical analysis] and [parsing].
//!
//! During lexical analysis, the source code is converted into a stream of lexical
//! tokens that represent the smallest meaningful units of the language. For example,
//! the source code `print("Hello world")` would _roughly_ be converted into the following
//! stream of tokens:
//!
//! ```text
//! Name("print"), LeftParen, String("Hello world"), RightParen
//! ```
//!
//! These tokens are then consumed by the `ruff_python_parser`, which matches them against a set of
//! grammar rules to verify that the source code is syntactically valid and to construct
//! an AST that represents the source code.
//!
//! During parsing, the `ruff_python_parser` consumes the tokens generated by the lexer and constructs
//! a tree representation of the source code. The tree is made up of nodes that represent
//! the different syntactic constructs of the language. If the source code is syntactically
//! invalid, parsing fails and an error is returned. After a successful parse, the AST can
//! be used to perform further analysis on the source code. Continuing with the example
//! above, the AST generated by the `ruff_python_parser` would _roughly_ look something like this:
//!
//! ```text
//! node: Expr {
//! value: {
//! node: Call {
//! func: {
//! node: Name {
//! id: "print",
//! ctx: Load,
//! },
//! },
//! args: [
//! node: Constant {
//! value: Str("Hello World"),
//! kind: None,
//! },
//! ],
//! keywords: [],
//! },
//! },
//! },
//!```
//!
//! **Note:** The Tokens/ASTs shown above are not the exact tokens/ASTs generated by the `ruff_python_parser`.
//! Refer to the [playground](https://play.ruff.rs) for the correct representation.
//!
//! ## Source code layout
//!
//! The functionality of this crate is split into several modules:
//!
//! - token: This module contains the definition of the tokens that are generated by the lexer.
//! - [lexer]: This module contains the lexer and is responsible for generating the tokens.
//! - parser: This module contains an interface to the [Parsed] and is responsible for generating the AST.
//! - mode: This module contains the definition of the different modes that the `ruff_python_parser` can be in.
//!
//! [lexical analysis]: https://en.wikipedia.org/wiki/Lexical_analysis
//! [parsing]: https://en.wikipedia.org/wiki/Parsing
//! [lexer]: crate::lexer
use std::iter::FusedIterator;
use std::ops::Deref;
pub use crate::error::{FStringErrorType, LexicalErrorType, ParseError, ParseErrorType};
pub use crate::token::{Token, TokenKind};
use crate::parser::Parser;
use ruff_python_ast::{Expr, Mod, ModExpression, ModModule, PySourceType, Suite};
use ruff_python_trivia::CommentRanges;
use ruff_text_size::{Ranged, TextRange, TextSize};
mod error;
pub mod lexer;
mod parser;
mod string;
mod token;
mod token_set;
mod token_source;
pub mod typing;
/// Parse a full Python module usually consisting of multiple lines.
///
/// This is a convenience function that can be used to parse a full Python program without having to
/// specify the [`Mode`] or the location. It is probably what you want to use most of the time.
///
/// # Example
///
/// For example, parsing a simple function definition and a call to that function:
///
/// ```
/// use ruff_python_parser::parse_module;
///
/// let source = r#"
/// def foo():
/// return 42
///
/// print(foo())
/// "#;
///
/// let module = parse_module(source);
/// assert!(module.is_ok());
/// ```
pub fn parse_module(source: &str) -> Result<Parsed<ModModule>, ParseError> {
Parser::new(source, Mode::Module)
.parse()
.try_into_module()
.unwrap()
.into_result()
}
/// Parses a single Python expression.
///
/// This convenience function can be used to parse a single expression without having to
/// specify the Mode or the location.
///
/// # Example
///
/// For example, parsing a single expression denoting the addition of two numbers:
///
/// ```
/// use ruff_python_parser::parse_expression;
///
/// let expr = parse_expression("1 + 2");
/// assert!(expr.is_ok());
/// ```
pub fn parse_expression(source: &str) -> Result<Parsed<ModExpression>, ParseError> {
Parser::new(source, Mode::Expression)
.parse()
.try_into_expression()
.unwrap()
.into_result()
}
/// Parses a Python expression for the given range in the source.
///
/// This function allows to specify the range of the expression in the source code, other than
/// that, it behaves exactly like [`parse_expression`].
///
/// # Example
///
/// Parsing one of the numeric literal which is part of an addition expression:
///
/// ```
/// use ruff_python_parser::parse_expression_range;
/// # use ruff_text_size::{TextRange, TextSize};
///
/// let parsed = parse_expression_range("11 + 22 + 33", TextRange::new(TextSize::new(5), TextSize::new(7)));
/// assert!(parsed.is_ok());
/// ```
pub fn parse_expression_range(
source: &str,
range: TextRange,
) -> Result<Parsed<ModExpression>, ParseError> {
let source = &source[..range.end().to_usize()];
Parser::new_starts_at(source, Mode::Expression, range.start())
.parse()
.try_into_expression()
.unwrap()
.into_result()
}
/// Parse the given Python source code using the specified [`Mode`].
///
/// This function is the most general function to parse Python code. Based on the [`Mode`] supplied,
/// it can be used to parse a single expression, a full Python program, an interactive expression
/// or a Python program containing IPython escape commands.
///
/// # Example
///
/// If we want to parse a simple expression, we can use the [`Mode::Expression`] mode during
/// parsing:
///
/// ```
/// use ruff_python_parser::{Mode, parse};
///
/// let parsed = parse("1 + 2", Mode::Expression);
/// assert!(parsed.is_ok());
/// ```
///
/// Alternatively, we can parse a full Python program consisting of multiple lines:
///
/// ```
/// use ruff_python_parser::{Mode, parse};
///
/// let source = r#"
/// class Greeter:
///
/// def greet(self):
/// print("Hello, world!")
/// "#;
/// let parsed = parse(source, Mode::Module);
/// assert!(parsed.is_ok());
/// ```
///
/// Additionally, we can parse a Python program containing IPython escapes:
///
/// ```
/// use ruff_python_parser::{Mode, parse};
///
/// let source = r#"
/// %timeit 1 + 2
/// ?str.replace
/// !ls
/// "#;
/// let parsed = parse(source, Mode::Ipython);
/// assert!(parsed.is_ok());
/// ```
pub fn parse(source: &str, mode: Mode) -> Result<Parsed<Mod>, ParseError> {
parse_unchecked(source, mode).into_result()
}
/// Parse the given Python source code using the specified [`Mode`].
///
/// This is same as the [`parse`] function except that it doesn't check for any [`ParseError`]
/// and returns the [`Parsed`] as is.
pub fn parse_unchecked(source: &str, mode: Mode) -> Parsed<Mod> {
Parser::new(source, mode).parse()
}
/// Parse the given Python source code using the specified [`PySourceType`].
pub fn parse_unchecked_source(source: &str, source_type: PySourceType) -> Parsed<ModModule> {
// SAFETY: Safe because `PySourceType` always parses to a `ModModule`
Parser::new(source, source_type.as_mode())
.parse()
.try_into_module()
.unwrap()
}
/// Represents the parsed source code.
#[derive(Debug, PartialEq, Clone)]
pub struct Parsed<T> {
syntax: T,
tokens: Tokens,
errors: Vec<ParseError>,
}
impl<T> Parsed<T> {
/// Returns the syntax node represented by this parsed output.
pub fn syntax(&self) -> &T {
&self.syntax
}
/// Returns all the tokens for the parsed output.
pub fn tokens(&self) -> &Tokens {
&self.tokens
}
/// Returns a list of syntax errors found during parsing.
pub fn errors(&self) -> &[ParseError] {
&self.errors
}
/// Consumes the [`Parsed`] output and returns the contained syntax node.
pub fn into_syntax(self) -> T {
self.syntax
}
/// Consumes the [`Parsed`] output and returns a list of syntax errors found during parsing.
pub fn into_errors(self) -> Vec<ParseError> {
self.errors
}
/// Returns `true` if the parsed source code is valid i.e., it has no syntax errors.
pub fn is_valid(&self) -> bool {
self.errors.is_empty()
}
/// Returns the [`Parsed`] output as a [`Result`], returning [`Ok`] if it has no syntax errors,
/// or [`Err`] containing the first [`ParseError`] encountered.
pub fn as_result(&self) -> Result<&Parsed<T>, &[ParseError]> {
if self.is_valid() {
Ok(self)
} else {
Err(&self.errors)
}
}
/// Consumes the [`Parsed`] output and returns a [`Result`] which is [`Ok`] if it has no syntax
/// errors, or [`Err`] containing the first [`ParseError`] encountered.
pub(crate) fn into_result(self) -> Result<Parsed<T>, ParseError> {
if self.is_valid() {
Ok(self)
} else {
Err(self.into_errors().into_iter().next().unwrap())
}
}
}
impl Parsed<Mod> {
/// Attempts to convert the [`Parsed<Mod>`] into a [`Parsed<ModModule>`].
///
/// This method checks if the `syntax` field of the output is a [`Mod::Module`]. If it is, the
/// method returns [`Some(Parsed<ModModule>)`] with the contained module. Otherwise, it
/// returns [`None`].
///
/// [`Some(Parsed<ModModule>)`]: Some
pub fn try_into_module(self) -> Option<Parsed<ModModule>> {
match self.syntax {
Mod::Module(module) => Some(Parsed {
syntax: module,
tokens: self.tokens,
errors: self.errors,
}),
Mod::Expression(_) => None,
}
}
/// Attempts to convert the [`Parsed<Mod>`] into a [`Parsed<ModExpression>`].
///
/// This method checks if the `syntax` field of the output is a [`Mod::Expression`]. If it is,
/// the method returns [`Some(Parsed<ModExpression>)`] with the contained expression.
/// Otherwise, it returns [`None`].
///
/// [`Some(Parsed<ModExpression>)`]: Some
pub fn try_into_expression(self) -> Option<Parsed<ModExpression>> {
match self.syntax {
Mod::Module(_) => None,
Mod::Expression(expression) => Some(Parsed {
syntax: expression,
tokens: self.tokens,
errors: self.errors,
}),
}
}
}
impl Parsed<ModModule> {
/// Returns the module body contained in this parsed output as a [`Suite`].
pub fn suite(&self) -> &Suite {
&self.syntax.body
}
/// Consumes the [`Parsed`] output and returns the module body as a [`Suite`].
pub fn into_suite(self) -> Suite {
self.syntax.body
}
}
impl Parsed<ModExpression> {
/// Returns the expression contained in this parsed output.
pub fn expr(&self) -> &Expr {
&self.syntax.body
}
/// Returns a mutable reference to the expression contained in this parsed output.
pub fn expr_mut(&mut self) -> &mut Expr {
&mut self.syntax.body
}
/// Consumes the [`Parsed`] output and returns the contained [`Expr`].
pub fn into_expr(self) -> Expr {
*self.syntax.body
}
}
/// Tokens represents a vector of lexed [`Token`].
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Tokens {
raw: Vec<Token>,
}
impl Tokens {
pub(crate) fn new(tokens: Vec<Token>) -> Tokens {
Tokens { raw: tokens }
}
/// Returns an iterator over all the tokens that provides context.
pub fn iter_with_context(&self) -> TokenIterWithContext {
TokenIterWithContext::new(&self.raw)
}
/// Returns a slice of [`Token`] that are within the given `range`.
///
/// The start and end offset of the given range should be either:
/// 1. Token boundary
/// 2. Gap between the tokens
///
/// For example, considering the following tokens and their corresponding range:
///
/// | Token | Range |
/// |---------------------|-----------|
/// | `Def` | `0..3` |
/// | `Name` | `4..7` |
/// | `Lpar` | `7..8` |
/// | `Rpar` | `8..9` |
/// | `Colon` | `9..10` |
/// | `Newline` | `10..11` |
/// | `Comment` | `15..24` |
/// | `NonLogicalNewline` | `24..25` |
/// | `Indent` | `25..29` |
/// | `Pass` | `29..33` |
///
/// Here, for (1) a token boundary is considered either the start or end offset of any of the
/// above tokens. For (2), the gap would be any offset between the `Newline` and `Comment`
/// token which are 12, 13, and 14.
///
/// Examples:
/// 1) `4..10` would give `Name`, `Lpar`, `Rpar`, `Colon`
/// 2) `11..25` would give `Comment`, `NonLogicalNewline`
/// 3) `12..25` would give same as (2) and offset 12 is in the "gap"
/// 4) `9..12` would give `Colon`, `Newline` and offset 12 is in the "gap"
/// 5) `18..27` would panic because both the start and end offset is within a token
///
/// ## Note
///
/// The returned slice can contain the [`TokenKind::Unknown`] token if there was a lexical
/// error encountered within the given range.
///
/// # Panics
///
/// If either the start or end offset of the given range is within a token range.
pub fn in_range(&self, range: TextRange) -> &[Token] {
let tokens_after_start = self.after(range.start());
match tokens_after_start.binary_search_by_key(&range.end(), Ranged::end) {
Ok(idx) => {
// If we found the token with the end offset, that token should be included in the
// return slice.
&tokens_after_start[..=idx]
}
Err(idx) => {
if let Some(token) = tokens_after_start.get(idx) {
// If it's equal to the start offset, then it's at a token boundary which is
// valid. If it's less than the start offset, then it's in the gap between the
// tokens which is valid as well.
assert!(
range.end() <= token.start(),
"End offset {:?} is inside a token range {:?}",
range.end(),
token.range()
);
}
// This index is where the token with the offset _could_ be, so that token should
// be excluded from the return slice.
&tokens_after_start[..idx]
}
}
}
/// Returns a slice of tokens after the given [`TextSize`] offset.
///
/// If the given offset is between two tokens, the returned slice will start from the following
/// token. In other words, if the offset is between the end of previous token and start of next
/// token, the returned slice will start from the next token.
///
/// # Panics
///
/// If the given offset is inside a token range.
pub fn after(&self, offset: TextSize) -> &[Token] {
match self.binary_search_by(|token| token.start().cmp(&offset)) {
Ok(idx) => &self[idx..],
Err(idx) => {
// We can't use `saturating_sub` here because a file could contain a BOM header, in
// which case the token starts at offset 3 for UTF-8 encoded file content.
if idx > 0 {
if let Some(prev) = self.get(idx - 1) {
// If it's equal to the end offset, then it's at a token boundary which is
// valid. If it's greater than the end offset, then it's in the gap between
// the tokens which is valid as well.
assert!(
offset >= prev.end(),
"Offset {:?} is inside a token range {:?}",
offset,
prev.range()
);
}
}
&self[idx..]
}
}
}
}
impl<'a> IntoIterator for &'a Tokens {
type Item = &'a Token;
type IntoIter = std::slice::Iter<'a, Token>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl Deref for Tokens {
type Target = [Token];
fn deref(&self) -> &Self::Target {
&self.raw
}
}
impl From<&Tokens> for CommentRanges {
fn from(tokens: &Tokens) -> Self {
let mut ranges = vec![];
for token in tokens {
if token.kind() == TokenKind::Comment {
ranges.push(token.range());
}
}
CommentRanges::new(ranges)
}
}
/// An iterator over the [`Token`]s with context.
///
/// This struct is created by the [`iter_with_context`] method on [`Tokens`]. Refer to its
/// documentation for more details.
///
/// [`iter_with_context`]: Tokens::iter_with_context
#[derive(Debug, Clone)]
pub struct TokenIterWithContext<'a> {
inner: std::slice::Iter<'a, Token>,
nesting: u32,
}
impl<'a> TokenIterWithContext<'a> {
fn new(tokens: &'a [Token]) -> TokenIterWithContext<'a> {
TokenIterWithContext {
inner: tokens.iter(),
nesting: 0,
}
}
/// Return the nesting level the iterator is currently in.
pub const fn nesting(&self) -> u32 {
self.nesting
}
/// Returns `true` if the iterator is within a parenthesized context.
pub const fn in_parenthesized_context(&self) -> bool {
self.nesting > 0
}
/// Returns the next [`Token`] in the iterator without consuming it.
pub fn peek(&self) -> Option<&'a Token> {
self.clone().next()
}
}
impl<'a> Iterator for TokenIterWithContext<'a> {
type Item = &'a Token;
fn next(&mut self) -> Option<Self::Item> {
let token = self.inner.next()?;
match token.kind() {
TokenKind::Lpar | TokenKind::Lbrace | TokenKind::Lsqb => self.nesting += 1,
TokenKind::Rpar | TokenKind::Rbrace | TokenKind::Rsqb => {
self.nesting = self.nesting.saturating_sub(1);
}
// This mimics the behavior of re-lexing which reduces the nesting level on the lexer.
// We don't need to reduce it by 1 because unlike the lexer we see the final token
// after recovering from every unclosed parenthesis.
TokenKind::Newline if self.nesting > 0 => {
self.nesting = 0;
}
_ => {}
}
Some(token)
}
}
impl FusedIterator for TokenIterWithContext<'_> {}
/// Control in the different modes by which a source file can be parsed.
///
/// The mode argument specifies in what way code must be parsed.
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
pub enum Mode {
/// The code consists of a sequence of statements.
Module,
/// The code consists of a single expression.
Expression,
/// The code consists of a sequence of statements which can include the
/// escape commands that are part of IPython syntax.
///
/// ## Supported escape commands:
///
/// - [Magic command system] which is limited to [line magics] and can start
/// with `?` or `??`.
/// - [Dynamic object information] which can start with `?` or `??`.
/// - [System shell access] which can start with `!` or `!!`.
/// - [Automatic parentheses and quotes] which can start with `/`, `;`, or `,`.
///
/// [Magic command system]: https://ipython.readthedocs.io/en/stable/interactive/reference.html#magic-command-system
/// [line magics]: https://ipython.readthedocs.io/en/stable/interactive/magics.html#line-magics
/// [Dynamic object information]: https://ipython.readthedocs.io/en/stable/interactive/reference.html#dynamic-object-information
/// [System shell access]: https://ipython.readthedocs.io/en/stable/interactive/reference.html#system-shell-access
/// [Automatic parentheses and quotes]: https://ipython.readthedocs.io/en/stable/interactive/reference.html#automatic-parentheses-and-quotes
Ipython,
}
impl std::str::FromStr for Mode {
type Err = ModeParseError;
fn from_str(s: &str) -> Result<Self, ModeParseError> {
match s {
"exec" | "single" => Ok(Mode::Module),
"eval" => Ok(Mode::Expression),
"ipython" => Ok(Mode::Ipython),
_ => Err(ModeParseError),
}
}
}
/// A type that can be represented as [Mode].
pub trait AsMode {
fn as_mode(&self) -> Mode;
}
impl AsMode for PySourceType {
fn as_mode(&self) -> Mode {
match self {
PySourceType::Python | PySourceType::Stub => Mode::Module,
PySourceType::Ipynb => Mode::Ipython,
}
}
}
/// Returned when a given mode is not valid.
#[derive(Debug)]
pub struct ModeParseError;
impl std::fmt::Display for ModeParseError {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, r#"mode must be "exec", "eval", "ipython", or "single""#)
}
}
#[cfg(test)]
mod tests {
use std::ops::Range;
use crate::token::TokenFlags;
use super::*;
/// Test case containing a "gap" between two tokens.
///
/// Code: <https://play.ruff.rs/a3658340-6df8-42c5-be80-178744bf1193>
const TEST_CASE_WITH_GAP: [(TokenKind, Range<u32>); 10] = [
(TokenKind::Def, 0..3),
(TokenKind::Name, 4..7),
(TokenKind::Lpar, 7..8),
(TokenKind::Rpar, 8..9),
(TokenKind::Colon, 9..10),
(TokenKind::Newline, 10..11),
// Gap ||..||
(TokenKind::Comment, 15..24),
(TokenKind::NonLogicalNewline, 24..25),
(TokenKind::Indent, 25..29),
(TokenKind::Pass, 29..33),
// No newline at the end to keep the token set full of unique tokens
];
/// Helper function to create [`Tokens`] from an iterator of (kind, range).
fn new_tokens(tokens: impl Iterator<Item = (TokenKind, Range<u32>)>) -> Tokens {
Tokens::new(
tokens
.map(|(kind, range)| {
Token::new(
kind,
TextRange::new(TextSize::new(range.start), TextSize::new(range.end)),
TokenFlags::empty(),
)
})
.collect(),
)
}
#[test]
fn tokens_after_offset_at_token_start() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let after = tokens.after(TextSize::new(8));
assert_eq!(after.len(), 7);
assert_eq!(after.first().unwrap().kind(), TokenKind::Rpar);
}
#[test]
fn tokens_after_offset_at_token_end() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let after = tokens.after(TextSize::new(11));
assert_eq!(after.len(), 4);
assert_eq!(after.first().unwrap().kind(), TokenKind::Comment);
}
#[test]
fn tokens_after_offset_between_tokens() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let after = tokens.after(TextSize::new(13));
assert_eq!(after.len(), 4);
assert_eq!(after.first().unwrap().kind(), TokenKind::Comment);
}
#[test]
fn tokens_after_offset_at_last_token_end() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let after = tokens.after(TextSize::new(33));
assert_eq!(after.len(), 0);
}
#[test]
#[should_panic(expected = "Offset 5 is inside a token range 4..7")]
fn tokens_after_offset_inside_token() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
tokens.after(TextSize::new(5));
}
#[test]
fn tokens_in_range_at_token_offset() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let in_range = tokens.in_range(TextRange::new(4.into(), 10.into()));
assert_eq!(in_range.len(), 4);
assert_eq!(in_range.first().unwrap().kind(), TokenKind::Name);
assert_eq!(in_range.last().unwrap().kind(), TokenKind::Colon);
}
#[test]
fn tokens_in_range_start_offset_at_token_end() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let in_range = tokens.in_range(TextRange::new(11.into(), 29.into()));
assert_eq!(in_range.len(), 3);
assert_eq!(in_range.first().unwrap().kind(), TokenKind::Comment);
assert_eq!(in_range.last().unwrap().kind(), TokenKind::Indent);
}
#[test]
fn tokens_in_range_end_offset_at_token_start() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let in_range = tokens.in_range(TextRange::new(8.into(), 15.into()));
assert_eq!(in_range.len(), 3);
assert_eq!(in_range.first().unwrap().kind(), TokenKind::Rpar);
assert_eq!(in_range.last().unwrap().kind(), TokenKind::Newline);
}
#[test]
fn tokens_in_range_start_offset_between_tokens() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let in_range = tokens.in_range(TextRange::new(13.into(), 29.into()));
assert_eq!(in_range.len(), 3);
assert_eq!(in_range.first().unwrap().kind(), TokenKind::Comment);
assert_eq!(in_range.last().unwrap().kind(), TokenKind::Indent);
}
#[test]
fn tokens_in_range_end_offset_between_tokens() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
let in_range = tokens.in_range(TextRange::new(9.into(), 13.into()));
assert_eq!(in_range.len(), 2);
assert_eq!(in_range.first().unwrap().kind(), TokenKind::Colon);
assert_eq!(in_range.last().unwrap().kind(), TokenKind::Newline);
}
#[test]
#[should_panic(expected = "Offset 5 is inside a token range 4..7")]
fn tokens_in_range_start_offset_inside_token() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
tokens.in_range(TextRange::new(5.into(), 10.into()));
}
#[test]
#[should_panic(expected = "End offset 6 is inside a token range 4..7")]
fn tokens_in_range_end_offset_inside_token() {
let tokens = new_tokens(TEST_CASE_WITH_GAP.into_iter());
tokens.in_range(TextRange::new(0.into(), 6.into()));
}
}