-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_pytorch.py
97 lines (75 loc) · 2.56 KB
/
train_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import time
import torch.nn as nn
import numpy as np
from model.torch.dataset import AudioFeatureDataset
from model.torch.transformer import Transformer
from torch.utils.data import DataLoader
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dataset = AudioFeatureDataset('./dataset/extracted_features.csv', mode='train')
dataloader = DataLoader(dataset, batch_size = 1, shuffle = True)
dataset_val = AudioFeatureDataset('./dataset/extracted_features.csv', mode="val")
dataloader_val = DataLoader(dataset, batch_size = 1, shuffle = True)
num_layers = 1
src_vocab_size = 297 # TIME-STEPS
src_pad_index = 0
embed_size = 256 # D-Model
num_heads = 1
dropout = 0.1
output_size = 1
forward_expansion = 4
model = Transformer(
src_vocab_size,
src_pad_index,
embed_size = embed_size,
dropout = dropout,
heads = num_heads,
num_layers = num_layers,
forward_expansion = forward_expansion
).to(device)
# Training
optimizer = torch.optim.Adam(model.parameters(), lr=0.000003)
loss_fn = nn.MSELoss()
running_loss = 0.
last_loss = 0.
model.train()
epochs = 1000
for epoch in range(epochs):
print(f"Epoch {epoch+1}\n-------------------------------")
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
# print('X', X.shape)
X = X.to(device)
y = y.to(device)
optimizer.zero_grad()
pred = model(X)
# print("Prediction")
pred = pred.squeeze()
loss = loss_fn(pred, y)
# losses.append(loss.to('cpu').detach().numpy())
# iterations += 1
# Backpropagation
loss.backward()
# print("Loss gradient", loss.grad)
optimizer.step()
running_loss += loss.item()
if batch % 100 == 0:
last_loss = running_loss / 100 # loss per batch
print('batch {} loss: {}'.format(batch + 1, last_loss))
# tb_x = epoch * len(dataloader) + batch + 1
# tb_writer.add_scalar('Loss/train', last_loss, tb_x)
running_loss = 0.
model.eval()
size = len(dataloader_val.dataset)
num_batches = len(dataloader_val)
test_loss, correct = 0, 0
with torch.no_grad():
for batch, (X, y) in enumerate(dataloader_val):
X = X.to(device)
y = y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")