-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp7-regularization.tex
64 lines (57 loc) · 2.4 KB
/
app7-regularization.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
%-------------------------------------------------------------------------------
\chapter{Solving a hierarchy with regularization}
\label{app.regularization}
\acresetall
%-------------------------------------------------------------------------------
Consider a simple hierarchy
%
\begin{hierarchy}[hr.reg]
\level $\ubarV{\objb}_1 \le \objA_1 \x \le \barV{\objb}_1$
\level $\ubarV{\objb}_2 \le \objA_2 \x \le \barV{\objb}_2$
\level $\objA_3 \x = \V{\objb}_3$
\end{hierarchy}
%
which must be solved with regularization of the objective on the second level
using the equality objective on the last level. We can solve this hierarchy in
two steps using a solver, which does not support regularization.
The first step is to solve the following hierarchy consisting of two levels
%
\begin{hierarchy}[hr.reg_step1]
\level $\ubarV{\objb}_1 \le \objA_1 \x \le \barV{\objb}_1$
\level $\ubarV{\objb}_2 \le \objA_2 \x \le \barV{\objb}_2$\\
$\gamma_r \objA_3 \x = \gamma_r \V{\objb}_3$
\end{hierarchy}
%
where $\gamma_r$ is regularization factor. Solution of \cref{hr.reg_step1}
yields the vector of violations $\violation_2^{\star}$ of the second objective:
%
\begin{equation}
\ubarV{\objb}_2 \le \objA_2 \x - \violation_2^{\star} \le \barV{\objb}_2.
\end{equation}
%
We decompose $\violation_2^{\star}$ into three components
%
\begin{equation}
\violation_2^{\star} = \ubar{\violation}_2^{\star} + \tilde{\violation}_2^{\star} + \bar{\violation}_2^{\star}
\end{equation}
%
Vector $\ubar{\violation}_2^{\star}$ contains violations of the lower bounds
and zeros for the constraints, where lower bounds are satisfied. Vectors
$\tilde{\violation}_2^{\star}$ and $\bar{\violation}_2^{\star}$ are formed in
the same way for equality and inequality constraints.
The second step is to solve a hierarchy with relaxed bounds on the second
level:
%
\begin{hierarchy}[hr.reg_step2]
\level $\ubarV{\objb}_1 \le \objA_1 \x \le \barV{\objb}_1$
\level $\ubarV{\objb}_2 + \ubar{\violation}_2^{\star} + \tilde{\violation}_2^{\star}
\le
\objA_2 \x
\le
\barV{\objb}_2 + \bar{\violation}_2^{\star} + \tilde{\violation}_2^{\star}$
\level $\objA_3 \x = \V{\objb}_3$
\end{hierarchy}
%
The procedure is easily generalized to a larger number of levels with and
without regularization. The number of hierarchies, which must be solved, is
equal to the number of regularized levels plus one.