-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathhand_detection_webcam.py
88 lines (60 loc) · 1.99 KB
/
hand_detection_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import cv2
import mediapipe as mp
import joblib
import numpy as np
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
# For webcam input:
hands = mp_hands.Hands(
min_detection_confidence=0.7, min_tracking_confidence=0.5)
cap = cv2.VideoCapture(0)
def data_clean(landmark):
data = landmark[0]
try:
data = str(data)
data = data.strip().split('\n')
garbage = ['landmark {', ' visibility: 0.0', ' presence: 0.0', '}']
without_garbage = []
for i in data:
if i not in garbage:
without_garbage.append(i)
clean = []
for i in without_garbage:
i = i.strip()
clean.append(i[2:])
for i in range(0, len(clean)):
clean[i] = float(clean[i])
return([clean])
except:
return(np.zeros([1,63], dtype=int)[0])
while cap.isOpened():
success, image = cap.read()
image = cv2.flip(image, 1)
if not success:
break
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
cleaned_landmark = data_clean(results.multi_hand_landmarks)
#print(cleaned_landmark)
if cleaned_landmark:
clf = joblib.load('model.pkl')
y_pred = clf.predict(cleaned_landmark)
image = cv2.putText(image, str(y_pred[0]), (50,150), cv2.FONT_HERSHEY_SIMPLEX, 3, (0,0,255), 2, cv2.LINE_AA)
cv2.imshow('MediaPipe Hands', image)
if cv2.waitKey(5) & 0xFF == 27:
break
hands.close()
cap.release()
cv2.destroyAllWindows()