-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathreward_trainer.py
172 lines (149 loc) · 8.4 KB
/
reward_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import transformers
import torch
torch.backends.cuda.matmul.allow_tf32 = True
import torch.nn.functional as F
from preference_datasets import get_batch_iterator, get_dataset
import argparse
import wandb
import os
from collections import defaultdict
import time
from utils import pad_to_length, get_local_run_dir
def get_logits(model, batch):
chosen_batch = {'attention_mask': batch['chosen_attention_mask'], 'input_ids': batch['chosen_input_ids']}
rejected_batch = {'attention_mask': batch['rejected_attention_mask'], 'input_ids': batch['rejected_input_ids']}
# combine the chosen and rejected batches into one batch
# combined_batch = {}
# max_length = max(chosen_batch['attention_mask'].shape[1], rejected_batch['attention_mask'].shape[1])
# pad_vals = {'attention_mask': 0, 'input_ids': tokenizer.pad_token_id}
# for key in chosen_batch.keys():
# chosen_vals = pad_to_length(chosen_batch[key], max_length, pad_value=pad_vals[key])
# rejected_vals = pad_to_length(rejected_batch[key], max_length, pad_value=pad_vals[key])
# combined_batch[key] = torch.cat([chosen_vals, rejected_vals], dim=0)
# logits = model(**combined_batch)['logits']
# split_size = chosen_batch['attention_mask'].shape[0]
# return logits[:split_size], logits[split_size:]
chosen_logits = model(**chosen_batch)['logits']
rejected_logits = model(**rejected_batch)['logits']
return chosen_logits, rejected_logits
def train_step(model, batch, optimizer):
metrics = {}
chosen_logits, rejected_logits = get_logits(model, batch)
loss = -F.logsigmoid(chosen_logits - rejected_logits).mean()
loss.backward()
optimizer.step()
optimizer.zero_grad(set_to_none=True)
metrics['train/loss'] = loss.item()
metrics['train/accuracy'] = (chosen_logits > rejected_logits).float().mean().item()
return metrics
def eval_loop(model, eval_batches):
def _eval_step(model, batch):
metrics = {}
with torch.no_grad():
chosen_logits, rejected_logits = get_logits(model, batch)
metrics['eval/loss'] = (-F.logsigmoid(chosen_logits - rejected_logits)).squeeze(1).cpu().numpy().tolist()
metrics['eval/accuracy'] = (chosen_logits > rejected_logits).float().squeeze(1).cpu().numpy().tolist()
return metrics
eval_start = time.time()
model.eval()
metrics = defaultdict(list)
for batch in eval_batches:
batch_metrics = _eval_step(model, batch)
for k, v in batch_metrics.items():
metrics[k].extend(v)
eval_time = time.time() - eval_start
wandb.log({k: sum(v) / len(v) for k, v in metrics.items()},
step=(idx+1)*args.batch_size)
wandb.log({'time/eval_time': eval_time}, step=idx * args.batch_size)
model.train()
return metrics
def save(model, optimizer, test_metrics, epoch, step, exp_dir):
save_dir = os.path.join(exp_dir, f'epoch-{epoch}')
os.makedirs(save_dir, exist_ok=True)
torch.save({
'state': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'step': step,
}, os.path.join(save_dir, 'checkpoint.pt'))
with open(os.path.join(save_dir, 'test_predictions.txt'), 'w') as f:
for acc, loss in zip(test_metrics['eval/accuracy'], test_metrics['eval/loss']):
f.write(f'{acc},{loss}\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--archive', type=str, default=None)
parser.add_argument('--prompt_set', type=str, default='sharegpt')
parser.add_argument('--prefs_path', type=str, default=None)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--cache_dir', type=str, default=os.getenv("PROJECT_CACHE", "~/.cache"))
parser.add_argument('--max_length', type=int, default=512)
parser.add_argument('--max_prompt_length', type=int, default=256)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--data_fraction', type=float, default=1.0)
parser.add_argument('--exp_name', type=str, default='reward_training_test')
parser.add_argument('--eval_frequency', type=int, default=10000)
parser.add_argument('--n_eval_examples', type=int, default=None)
parser.add_argument('--save_frequency', type=int, default=1, help='number of epochs between saves')
parser.add_argument('--num_epochs', type=int, default=1)
parser.add_argument('--debug', action='store_true', default=False)
parser.add_argument('--lr', type=float, default=1e-6)
args = parser.parse_args()
if args.debug:
wandb.init = lambda *args, **kwargs: None
wandb.log = lambda *args, **kwargs: None
exp_dir = get_local_run_dir(args.exp_name, [os.getenv("PROJECT_CACHE", "~/.cache")])
os.makedirs(exp_dir, exist_ok=True)
print(f'experiment directory: {exp_dir}')
os.environ['WANDB_CACHE_DIR'] = args.cache_dir
wandb.init(
entity=None,
project='dpo-rlaif',
dir=args.cache_dir,
name=args.exp_name,
)
model = transformers.AutoModelForSequenceClassification.from_pretrained('mistralai/Mistral-7B-v0.1', num_labels=1,
torch_dtype=torch.float32, low_cpu_mem_usage=True, device_map='balanced')
tokenizer = transformers.AutoTokenizer.from_pretrained('mistralai/Mistral-7B-v0.1')
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.eos_token_id
if args.archive is not None:
state_dict = torch.load(args.archive, map_location='cpu')
model.load_state_dict(state_dict['state'], strict=False)
print('loaded pre-trained weights')
optimizer = torch.optim.RMSprop(model.parameters(), lr=args.lr)
if 'sharegpt' in args.prompt_set:
assert args.prefs_path is not None
train_iterator = get_batch_iterator([args.prompt_set], tokenizer=tokenizer, split='train', batch_size=args.batch_size, sft_mode=False,
seed=0, n_epochs=args.num_epochs, cache_dir=args.cache_dir, shuffle=False,
max_prompt_length=args.max_prompt_length, max_length=args.max_length,
num_turns=1, data_fraction=args.data_fraction, prefs_path=args.prefs_path, sampled_data_dir=None)
if args.n_eval_examples is None:
n_eval_epochs = 1
else:
n_eval_epochs = None
eval_iterator = get_batch_iterator([args.prompt_set], tokenizer=tokenizer, split='test', batch_size=args.batch_size*2, sft_mode=False,
seed=0, n_examples=args.n_eval_examples, n_epochs=n_eval_epochs, cache_dir=args.cache_dir, shuffle=False,
max_prompt_length=args.max_prompt_length, max_length=args.max_length,
num_turns=1, data_fraction=args.data_fraction, prefs_path=args.prefs_path, sampled_data_dir=None)
eval_batches = list(eval_iterator)
model.train()
# compute the number of examples per epoch: TODO(works for single dataset only)
all_data = get_dataset(args.prompt_set, cache_dir=args.cache_dir, split='train', prefs_path=args.prefs_path, num_turns=1, data_fraction=args.data_fraction)
n_examples_per_epoch = (len(all_data) // args.batch_size) * args.batch_size
next_save = n_examples_per_epoch
for idx, batch in enumerate(train_iterator):
if (idx * args.batch_size) % args.eval_frequency == 0:
eval_loop(model, eval_batches)
train_start = time.time()
train_metrics = train_step(model, batch, optimizer)
train_time = time.time() - train_start
wandb.log(train_metrics, step=(idx+1)*args.batch_size)
wandb.log({'time/train_time': train_time}, step=(idx+1)*args.batch_size)
wandb.log({'time/time_per_example': train_time / args.batch_size}, step=(idx+1)*args.batch_size)
wandb.log({'time/examples_per_second': args.batch_size / train_time}, step=(idx+1)*args.batch_size)
print(f'step: {idx+1}, train loss: {train_metrics["train/loss"]:.4f}, train acc: {train_metrics["train/accuracy"]:.4f}')
if (idx + 1) * args.batch_size >= next_save:
print(f'saving checkpoint at step {(idx + 1) * args.batch_size}')
test_metrics = eval_loop(model, eval_batches)
save(model, optimizer, test_metrics, ((idx + 1) * args.batch_size) // n_examples_per_epoch, idx, exp_dir)
next_save += args.save_frequency * n_examples_per_epoch