forked from pol51/OpenSSL-CMake
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCHANGES
10897 lines (8645 loc) · 462 KB
/
CHANGES
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
OpenSSL CHANGES
_______________
Changes between 1.0.1t and 1.0.1u [22 Sep 2016]
*) OCSP Status Request extension unbounded memory growth
A malicious client can send an excessively large OCSP Status Request
extension. If that client continually requests renegotiation, sending a
large OCSP Status Request extension each time, then there will be unbounded
memory growth on the server. This will eventually lead to a Denial Of
Service attack through memory exhaustion. Servers with a default
configuration are vulnerable even if they do not support OCSP. Builds using
the "no-ocsp" build time option are not affected.
This issue was reported to OpenSSL by Shi Lei (Gear Team, Qihoo 360 Inc.)
(CVE-2016-6304)
[Matt Caswell]
*) In order to mitigate the SWEET32 attack, the DES ciphers were moved from
HIGH to MEDIUM.
This issue was reported to OpenSSL Karthikeyan Bhargavan and Gaetan
Leurent (INRIA)
(CVE-2016-2183)
[Rich Salz]
*) OOB write in MDC2_Update()
An overflow can occur in MDC2_Update() either if called directly or
through the EVP_DigestUpdate() function using MDC2. If an attacker
is able to supply very large amounts of input data after a previous
call to EVP_EncryptUpdate() with a partial block then a length check
can overflow resulting in a heap corruption.
The amount of data needed is comparable to SIZE_MAX which is impractical
on most platforms.
This issue was reported to OpenSSL by Shi Lei (Gear Team, Qihoo 360 Inc.)
(CVE-2016-6303)
[Stephen Henson]
*) Malformed SHA512 ticket DoS
If a server uses SHA512 for TLS session ticket HMAC it is vulnerable to a
DoS attack where a malformed ticket will result in an OOB read which will
ultimately crash.
The use of SHA512 in TLS session tickets is comparatively rare as it requires
a custom server callback and ticket lookup mechanism.
This issue was reported to OpenSSL by Shi Lei (Gear Team, Qihoo 360 Inc.)
(CVE-2016-6302)
[Stephen Henson]
*) OOB write in BN_bn2dec()
The function BN_bn2dec() does not check the return value of BN_div_word().
This can cause an OOB write if an application uses this function with an
overly large BIGNUM. This could be a problem if an overly large certificate
or CRL is printed out from an untrusted source. TLS is not affected because
record limits will reject an oversized certificate before it is parsed.
This issue was reported to OpenSSL by Shi Lei (Gear Team, Qihoo 360 Inc.)
(CVE-2016-2182)
[Stephen Henson]
*) OOB read in TS_OBJ_print_bio()
The function TS_OBJ_print_bio() misuses OBJ_obj2txt(): the return value is
the total length the OID text representation would use and not the amount
of data written. This will result in OOB reads when large OIDs are
presented.
This issue was reported to OpenSSL by Shi Lei (Gear Team, Qihoo 360 Inc.)
(CVE-2016-2180)
[Stephen Henson]
*) Pointer arithmetic undefined behaviour
Avoid some undefined pointer arithmetic
A common idiom in the codebase is to check limits in the following manner:
"p + len > limit"
Where "p" points to some malloc'd data of SIZE bytes and
limit == p + SIZE
"len" here could be from some externally supplied data (e.g. from a TLS
message).
The rules of C pointer arithmetic are such that "p + len" is only well
defined where len <= SIZE. Therefore the above idiom is actually
undefined behaviour.
For example this could cause problems if some malloc implementation
provides an address for "p" such that "p + len" actually overflows for
values of len that are too big and therefore p + len < limit.
This issue was reported to OpenSSL by Guido Vranken
(CVE-2016-2177)
[Matt Caswell]
*) Constant time flag not preserved in DSA signing
Operations in the DSA signing algorithm should run in constant time in
order to avoid side channel attacks. A flaw in the OpenSSL DSA
implementation means that a non-constant time codepath is followed for
certain operations. This has been demonstrated through a cache-timing
attack to be sufficient for an attacker to recover the private DSA key.
This issue was reported by César Pereida (Aalto University), Billy Brumley
(Tampere University of Technology), and Yuval Yarom (The University of
Adelaide and NICTA).
(CVE-2016-2178)
[César Pereida]
*) DTLS buffered message DoS
In a DTLS connection where handshake messages are delivered out-of-order
those messages that OpenSSL is not yet ready to process will be buffered
for later use. Under certain circumstances, a flaw in the logic means that
those messages do not get removed from the buffer even though the handshake
has been completed. An attacker could force up to approx. 15 messages to
remain in the buffer when they are no longer required. These messages will
be cleared when the DTLS connection is closed. The default maximum size for
a message is 100k. Therefore the attacker could force an additional 1500k
to be consumed per connection. By opening many simulataneous connections an
attacker could cause a DoS attack through memory exhaustion.
This issue was reported to OpenSSL by Quan Luo.
(CVE-2016-2179)
[Matt Caswell]
*) DTLS replay protection DoS
A flaw in the DTLS replay attack protection mechanism means that records
that arrive for future epochs update the replay protection "window" before
the MAC for the record has been validated. This could be exploited by an
attacker by sending a record for the next epoch (which does not have to
decrypt or have a valid MAC), with a very large sequence number. This means
that all subsequent legitimate packets are dropped causing a denial of
service for a specific DTLS connection.
This issue was reported to OpenSSL by the OCAP audit team.
(CVE-2016-2181)
[Matt Caswell]
*) Certificate message OOB reads
In OpenSSL 1.0.2 and earlier some missing message length checks can result
in OOB reads of up to 2 bytes beyond an allocated buffer. There is a
theoretical DoS risk but this has not been observed in practice on common
platforms.
The messages affected are client certificate, client certificate request
and server certificate. As a result the attack can only be performed
against a client or a server which enables client authentication.
This issue was reported to OpenSSL by Shi Lei (Gear Team, Qihoo 360 Inc.)
(CVE-2016-6306)
[Stephen Henson]
Changes between 1.0.1s and 1.0.1t [3 May 2016]
*) Prevent padding oracle in AES-NI CBC MAC check
A MITM attacker can use a padding oracle attack to decrypt traffic
when the connection uses an AES CBC cipher and the server support
AES-NI.
This issue was introduced as part of the fix for Lucky 13 padding
attack (CVE-2013-0169). The padding check was rewritten to be in
constant time by making sure that always the same bytes are read and
compared against either the MAC or padding bytes. But it no longer
checked that there was enough data to have both the MAC and padding
bytes.
This issue was reported by Juraj Somorovsky using TLS-Attacker.
(CVE-2016-2107)
[Kurt Roeckx]
*) Fix EVP_EncodeUpdate overflow
An overflow can occur in the EVP_EncodeUpdate() function which is used for
Base64 encoding of binary data. If an attacker is able to supply very large
amounts of input data then a length check can overflow resulting in a heap
corruption.
Internally to OpenSSL the EVP_EncodeUpdate() function is primarly used by
the PEM_write_bio* family of functions. These are mainly used within the
OpenSSL command line applications, so any application which processes data
from an untrusted source and outputs it as a PEM file should be considered
vulnerable to this issue. User applications that call these APIs directly
with large amounts of untrusted data may also be vulnerable.
This issue was reported by Guido Vranken.
(CVE-2016-2105)
[Matt Caswell]
*) Fix EVP_EncryptUpdate overflow
An overflow can occur in the EVP_EncryptUpdate() function. If an attacker
is able to supply very large amounts of input data after a previous call to
EVP_EncryptUpdate() with a partial block then a length check can overflow
resulting in a heap corruption. Following an analysis of all OpenSSL
internal usage of the EVP_EncryptUpdate() function all usage is one of two
forms. The first form is where the EVP_EncryptUpdate() call is known to be
the first called function after an EVP_EncryptInit(), and therefore that
specific call must be safe. The second form is where the length passed to
EVP_EncryptUpdate() can be seen from the code to be some small value and
therefore there is no possibility of an overflow. Since all instances are
one of these two forms, it is believed that there can be no overflows in
internal code due to this problem. It should be noted that
EVP_DecryptUpdate() can call EVP_EncryptUpdate() in certain code paths.
Also EVP_CipherUpdate() is a synonym for EVP_EncryptUpdate(). All instances
of these calls have also been analysed too and it is believed there are no
instances in internal usage where an overflow could occur.
This issue was reported by Guido Vranken.
(CVE-2016-2106)
[Matt Caswell]
*) Prevent ASN.1 BIO excessive memory allocation
When ASN.1 data is read from a BIO using functions such as d2i_CMS_bio()
a short invalid encoding can casuse allocation of large amounts of memory
potentially consuming excessive resources or exhausting memory.
Any application parsing untrusted data through d2i BIO functions is
affected. The memory based functions such as d2i_X509() are *not* affected.
Since the memory based functions are used by the TLS library, TLS
applications are not affected.
This issue was reported by Brian Carpenter.
(CVE-2016-2109)
[Stephen Henson]
*) EBCDIC overread
ASN1 Strings that are over 1024 bytes can cause an overread in applications
using the X509_NAME_oneline() function on EBCDIC systems. This could result
in arbitrary stack data being returned in the buffer.
This issue was reported by Guido Vranken.
(CVE-2016-2176)
[Matt Caswell]
*) Modify behavior of ALPN to invoke callback after SNI/servername
callback, such that updates to the SSL_CTX affect ALPN.
[Todd Short]
*) Remove LOW from the DEFAULT cipher list. This removes singles DES from the
default.
[Kurt Roeckx]
*) Only remove the SSLv2 methods with the no-ssl2-method option. When the
methods are enabled and ssl2 is disabled the methods return NULL.
[Kurt Roeckx]
Changes between 1.0.1r and 1.0.1s [1 Mar 2016]
* Disable weak ciphers in SSLv3 and up in default builds of OpenSSL.
Builds that are not configured with "enable-weak-ssl-ciphers" will not
provide any "EXPORT" or "LOW" strength ciphers.
[Viktor Dukhovni]
* Disable SSLv2 default build, default negotiation and weak ciphers. SSLv2
is by default disabled at build-time. Builds that are not configured with
"enable-ssl2" will not support SSLv2. Even if "enable-ssl2" is used,
users who want to negotiate SSLv2 via the version-flexible SSLv23_method()
will need to explicitly call either of:
SSL_CTX_clear_options(ctx, SSL_OP_NO_SSLv2);
or
SSL_clear_options(ssl, SSL_OP_NO_SSLv2);
as appropriate. Even if either of those is used, or the application
explicitly uses the version-specific SSLv2_method() or its client and
server variants, SSLv2 ciphers vulnerable to exhaustive search key
recovery have been removed. Specifically, the SSLv2 40-bit EXPORT
ciphers, and SSLv2 56-bit DES are no longer available.
(CVE-2016-0800)
[Viktor Dukhovni]
*) Fix a double-free in DSA code
A double free bug was discovered when OpenSSL parses malformed DSA private
keys and could lead to a DoS attack or memory corruption for applications
that receive DSA private keys from untrusted sources. This scenario is
considered rare.
This issue was reported to OpenSSL by Adam Langley(Google/BoringSSL) using
libFuzzer.
(CVE-2016-0705)
[Stephen Henson]
*) Disable SRP fake user seed to address a server memory leak.
Add a new method SRP_VBASE_get1_by_user that handles the seed properly.
SRP_VBASE_get_by_user had inconsistent memory management behaviour.
In order to fix an unavoidable memory leak, SRP_VBASE_get_by_user
was changed to ignore the "fake user" SRP seed, even if the seed
is configured.
Users should use SRP_VBASE_get1_by_user instead. Note that in
SRP_VBASE_get1_by_user, caller must free the returned value. Note
also that even though configuring the SRP seed attempts to hide
invalid usernames by continuing the handshake with fake
credentials, this behaviour is not constant time and no strong
guarantees are made that the handshake is indistinguishable from
that of a valid user.
(CVE-2016-0798)
[Emilia Käsper]
*) Fix BN_hex2bn/BN_dec2bn NULL pointer deref/heap corruption
In the BN_hex2bn function the number of hex digits is calculated using an
int value |i|. Later |bn_expand| is called with a value of |i * 4|. For
large values of |i| this can result in |bn_expand| not allocating any
memory because |i * 4| is negative. This can leave the internal BIGNUM data
field as NULL leading to a subsequent NULL ptr deref. For very large values
of |i|, the calculation |i * 4| could be a positive value smaller than |i|.
In this case memory is allocated to the internal BIGNUM data field, but it
is insufficiently sized leading to heap corruption. A similar issue exists
in BN_dec2bn. This could have security consequences if BN_hex2bn/BN_dec2bn
is ever called by user applications with very large untrusted hex/dec data.
This is anticipated to be a rare occurrence.
All OpenSSL internal usage of these functions use data that is not expected
to be untrusted, e.g. config file data or application command line
arguments. If user developed applications generate config file data based
on untrusted data then it is possible that this could also lead to security
consequences. This is also anticipated to be rare.
This issue was reported to OpenSSL by Guido Vranken.
(CVE-2016-0797)
[Matt Caswell]
*) Fix memory issues in BIO_*printf functions
The internal |fmtstr| function used in processing a "%s" format string in
the BIO_*printf functions could overflow while calculating the length of a
string and cause an OOB read when printing very long strings.
Additionally the internal |doapr_outch| function can attempt to write to an
OOB memory location (at an offset from the NULL pointer) in the event of a
memory allocation failure. In 1.0.2 and below this could be caused where
the size of a buffer to be allocated is greater than INT_MAX. E.g. this
could be in processing a very long "%s" format string. Memory leaks can
also occur.
The first issue may mask the second issue dependent on compiler behaviour.
These problems could enable attacks where large amounts of untrusted data
is passed to the BIO_*printf functions. If applications use these functions
in this way then they could be vulnerable. OpenSSL itself uses these
functions when printing out human-readable dumps of ASN.1 data. Therefore
applications that print this data could be vulnerable if the data is from
untrusted sources. OpenSSL command line applications could also be
vulnerable where they print out ASN.1 data, or if untrusted data is passed
as command line arguments.
Libssl is not considered directly vulnerable. Additionally certificates etc
received via remote connections via libssl are also unlikely to be able to
trigger these issues because of message size limits enforced within libssl.
This issue was reported to OpenSSL Guido Vranken.
(CVE-2016-0799)
[Matt Caswell]
*) Side channel attack on modular exponentiation
A side-channel attack was found which makes use of cache-bank conflicts on
the Intel Sandy-Bridge microarchitecture which could lead to the recovery
of RSA keys. The ability to exploit this issue is limited as it relies on
an attacker who has control of code in a thread running on the same
hyper-threaded core as the victim thread which is performing decryptions.
This issue was reported to OpenSSL by Yuval Yarom, The University of
Adelaide and NICTA, Daniel Genkin, Technion and Tel Aviv University, and
Nadia Heninger, University of Pennsylvania with more information at
http://cachebleed.info.
(CVE-2016-0702)
[Andy Polyakov]
*) Change the req app to generate a 2048-bit RSA/DSA key by default,
if no keysize is specified with default_bits. This fixes an
omission in an earlier change that changed all RSA/DSA key generation
apps to use 2048 bits by default.
[Emilia Käsper]
Changes between 1.0.1q and 1.0.1r [28 Jan 2016]
*) Protection for DH small subgroup attacks
As a precautionary measure the SSL_OP_SINGLE_DH_USE option has been
switched on by default and cannot be disabled. This could have some
performance impact.
[Matt Caswell]
*) SSLv2 doesn't block disabled ciphers
A malicious client can negotiate SSLv2 ciphers that have been disabled on
the server and complete SSLv2 handshakes even if all SSLv2 ciphers have
been disabled, provided that the SSLv2 protocol was not also disabled via
SSL_OP_NO_SSLv2.
This issue was reported to OpenSSL on 26th December 2015 by Nimrod Aviram
and Sebastian Schinzel.
(CVE-2015-3197)
[Viktor Dukhovni]
*) Reject DH handshakes with parameters shorter than 1024 bits.
[Kurt Roeckx]
Changes between 1.0.1p and 1.0.1q [3 Dec 2015]
*) Certificate verify crash with missing PSS parameter
The signature verification routines will crash with a NULL pointer
dereference if presented with an ASN.1 signature using the RSA PSS
algorithm and absent mask generation function parameter. Since these
routines are used to verify certificate signature algorithms this can be
used to crash any certificate verification operation and exploited in a
DoS attack. Any application which performs certificate verification is
vulnerable including OpenSSL clients and servers which enable client
authentication.
This issue was reported to OpenSSL by Loïc Jonas Etienne (Qnective AG).
(CVE-2015-3194)
[Stephen Henson]
*) X509_ATTRIBUTE memory leak
When presented with a malformed X509_ATTRIBUTE structure OpenSSL will leak
memory. This structure is used by the PKCS#7 and CMS routines so any
application which reads PKCS#7 or CMS data from untrusted sources is
affected. SSL/TLS is not affected.
This issue was reported to OpenSSL by Adam Langley (Google/BoringSSL) using
libFuzzer.
(CVE-2015-3195)
[Stephen Henson]
*) Rewrite EVP_DecodeUpdate (base64 decoding) to fix several bugs.
This changes the decoding behaviour for some invalid messages,
though the change is mostly in the more lenient direction, and
legacy behaviour is preserved as much as possible.
[Emilia Käsper]
*) In DSA_generate_parameters_ex, if the provided seed is too short,
use a random seed, as already documented.
[Rich Salz and Ismo Puustinen <[email protected]>]
Changes between 1.0.1o and 1.0.1p [9 Jul 2015]
*) Alternate chains certificate forgery
During certificate verfification, OpenSSL will attempt to find an
alternative certificate chain if the first attempt to build such a chain
fails. An error in the implementation of this logic can mean that an
attacker could cause certain checks on untrusted certificates to be
bypassed, such as the CA flag, enabling them to use a valid leaf
certificate to act as a CA and "issue" an invalid certificate.
This issue was reported to OpenSSL by Adam Langley/David Benjamin
(Google/BoringSSL).
(CVE-2015-1793)
[Matt Caswell]
*) Race condition handling PSK identify hint
If PSK identity hints are received by a multi-threaded client then
the values are wrongly updated in the parent SSL_CTX structure. This can
result in a race condition potentially leading to a double free of the
identify hint data.
(CVE-2015-3196)
[Stephen Henson]
Changes between 1.0.1n and 1.0.1o [12 Jun 2015]
*) Fix HMAC ABI incompatibility. The previous version introduced an ABI
incompatibility in the handling of HMAC. The previous ABI has now been
restored.
Changes between 1.0.1m and 1.0.1n [11 Jun 2015]
*) Malformed ECParameters causes infinite loop
When processing an ECParameters structure OpenSSL enters an infinite loop
if the curve specified is over a specially malformed binary polynomial
field.
This can be used to perform denial of service against any
system which processes public keys, certificate requests or
certificates. This includes TLS clients and TLS servers with
client authentication enabled.
This issue was reported to OpenSSL by Joseph Barr-Pixton.
(CVE-2015-1788)
[Andy Polyakov]
*) Exploitable out-of-bounds read in X509_cmp_time
X509_cmp_time does not properly check the length of the ASN1_TIME
string and can read a few bytes out of bounds. In addition,
X509_cmp_time accepts an arbitrary number of fractional seconds in the
time string.
An attacker can use this to craft malformed certificates and CRLs of
various sizes and potentially cause a segmentation fault, resulting in
a DoS on applications that verify certificates or CRLs. TLS clients
that verify CRLs are affected. TLS clients and servers with client
authentication enabled may be affected if they use custom verification
callbacks.
This issue was reported to OpenSSL by Robert Swiecki (Google), and
independently by Hanno Böck.
(CVE-2015-1789)
[Emilia Käsper]
*) PKCS7 crash with missing EnvelopedContent
The PKCS#7 parsing code does not handle missing inner EncryptedContent
correctly. An attacker can craft malformed ASN.1-encoded PKCS#7 blobs
with missing content and trigger a NULL pointer dereference on parsing.
Applications that decrypt PKCS#7 data or otherwise parse PKCS#7
structures from untrusted sources are affected. OpenSSL clients and
servers are not affected.
This issue was reported to OpenSSL by Michal Zalewski (Google).
(CVE-2015-1790)
[Emilia Käsper]
*) CMS verify infinite loop with unknown hash function
When verifying a signedData message the CMS code can enter an infinite loop
if presented with an unknown hash function OID. This can be used to perform
denial of service against any system which verifies signedData messages using
the CMS code.
This issue was reported to OpenSSL by Johannes Bauer.
(CVE-2015-1792)
[Stephen Henson]
*) Race condition handling NewSessionTicket
If a NewSessionTicket is received by a multi-threaded client when attempting to
reuse a previous ticket then a race condition can occur potentially leading to
a double free of the ticket data.
(CVE-2015-1791)
[Matt Caswell]
*) Reject DH handshakes with parameters shorter than 768 bits.
[Kurt Roeckx and Emilia Kasper]
*) dhparam: generate 2048-bit parameters by default.
[Kurt Roeckx and Emilia Kasper]
Changes between 1.0.1l and 1.0.1m [19 Mar 2015]
*) Segmentation fault in ASN1_TYPE_cmp fix
The function ASN1_TYPE_cmp will crash with an invalid read if an attempt is
made to compare ASN.1 boolean types. Since ASN1_TYPE_cmp is used to check
certificate signature algorithm consistency this can be used to crash any
certificate verification operation and exploited in a DoS attack. Any
application which performs certificate verification is vulnerable including
OpenSSL clients and servers which enable client authentication.
(CVE-2015-0286)
[Stephen Henson]
*) ASN.1 structure reuse memory corruption fix
Reusing a structure in ASN.1 parsing may allow an attacker to cause
memory corruption via an invalid write. Such reuse is and has been
strongly discouraged and is believed to be rare.
Applications that parse structures containing CHOICE or ANY DEFINED BY
components may be affected. Certificate parsing (d2i_X509 and related
functions) are however not affected. OpenSSL clients and servers are
not affected.
(CVE-2015-0287)
[Stephen Henson]
*) PKCS7 NULL pointer dereferences fix
The PKCS#7 parsing code does not handle missing outer ContentInfo
correctly. An attacker can craft malformed ASN.1-encoded PKCS#7 blobs with
missing content and trigger a NULL pointer dereference on parsing.
Applications that verify PKCS#7 signatures, decrypt PKCS#7 data or
otherwise parse PKCS#7 structures from untrusted sources are
affected. OpenSSL clients and servers are not affected.
This issue was reported to OpenSSL by Michal Zalewski (Google).
(CVE-2015-0289)
[Emilia Käsper]
*) DoS via reachable assert in SSLv2 servers fix
A malicious client can trigger an OPENSSL_assert (i.e., an abort) in
servers that both support SSLv2 and enable export cipher suites by sending
a specially crafted SSLv2 CLIENT-MASTER-KEY message.
This issue was discovered by Sean Burford (Google) and Emilia Käsper
(OpenSSL development team).
(CVE-2015-0293)
[Emilia Käsper]
*) Use After Free following d2i_ECPrivatekey error fix
A malformed EC private key file consumed via the d2i_ECPrivateKey function
could cause a use after free condition. This, in turn, could cause a double
free in several private key parsing functions (such as d2i_PrivateKey
or EVP_PKCS82PKEY) and could lead to a DoS attack or memory corruption
for applications that receive EC private keys from untrusted
sources. This scenario is considered rare.
This issue was discovered by the BoringSSL project and fixed in their
commit 517073cd4b.
(CVE-2015-0209)
[Matt Caswell]
*) X509_to_X509_REQ NULL pointer deref fix
The function X509_to_X509_REQ will crash with a NULL pointer dereference if
the certificate key is invalid. This function is rarely used in practice.
This issue was discovered by Brian Carpenter.
(CVE-2015-0288)
[Stephen Henson]
*) Removed the export ciphers from the DEFAULT ciphers
[Kurt Roeckx]
Changes between 1.0.1k and 1.0.1l [15 Jan 2015]
*) Build fixes for the Windows and OpenVMS platforms
[Matt Caswell and Richard Levitte]
Changes between 1.0.1j and 1.0.1k [8 Jan 2015]
*) Fix DTLS segmentation fault in dtls1_get_record. A carefully crafted DTLS
message can cause a segmentation fault in OpenSSL due to a NULL pointer
dereference. This could lead to a Denial Of Service attack. Thanks to
Markus Stenberg of Cisco Systems, Inc. for reporting this issue.
(CVE-2014-3571)
[Steve Henson]
*) Fix DTLS memory leak in dtls1_buffer_record. A memory leak can occur in the
dtls1_buffer_record function under certain conditions. In particular this
could occur if an attacker sent repeated DTLS records with the same
sequence number but for the next epoch. The memory leak could be exploited
by an attacker in a Denial of Service attack through memory exhaustion.
Thanks to Chris Mueller for reporting this issue.
(CVE-2015-0206)
[Matt Caswell]
*) Fix issue where no-ssl3 configuration sets method to NULL. When openssl is
built with the no-ssl3 option and a SSL v3 ClientHello is received the ssl
method would be set to NULL which could later result in a NULL pointer
dereference. Thanks to Frank Schmirler for reporting this issue.
(CVE-2014-3569)
[Kurt Roeckx]
*) Abort handshake if server key exchange message is omitted for ephemeral
ECDH ciphersuites.
Thanks to Karthikeyan Bhargavan of the PROSECCO team at INRIA for
reporting this issue.
(CVE-2014-3572)
[Steve Henson]
*) Remove non-export ephemeral RSA code on client and server. This code
violated the TLS standard by allowing the use of temporary RSA keys in
non-export ciphersuites and could be used by a server to effectively
downgrade the RSA key length used to a value smaller than the server
certificate. Thanks for Karthikeyan Bhargavan of the PROSECCO team at
INRIA or reporting this issue.
(CVE-2015-0204)
[Steve Henson]
*) Fixed issue where DH client certificates are accepted without verification.
An OpenSSL server will accept a DH certificate for client authentication
without the certificate verify message. This effectively allows a client to
authenticate without the use of a private key. This only affects servers
which trust a client certificate authority which issues certificates
containing DH keys: these are extremely rare and hardly ever encountered.
Thanks for Karthikeyan Bhargavan of the PROSECCO team at INRIA or reporting
this issue.
(CVE-2015-0205)
[Steve Henson]
*) Ensure that the session ID context of an SSL is updated when its
SSL_CTX is updated via SSL_set_SSL_CTX.
The session ID context is typically set from the parent SSL_CTX,
and can vary with the CTX.
[Adam Langley]
*) Fix various certificate fingerprint issues.
By using non-DER or invalid encodings outside the signed portion of a
certificate the fingerprint can be changed without breaking the signature.
Although no details of the signed portion of the certificate can be changed
this can cause problems with some applications: e.g. those using the
certificate fingerprint for blacklists.
1. Reject signatures with non zero unused bits.
If the BIT STRING containing the signature has non zero unused bits reject
the signature. All current signature algorithms require zero unused bits.
2. Check certificate algorithm consistency.
Check the AlgorithmIdentifier inside TBS matches the one in the
certificate signature. NB: this will result in signature failure
errors for some broken certificates.
Thanks to Konrad Kraszewski from Google for reporting this issue.
3. Check DSA/ECDSA signatures use DER.
Reencode DSA/ECDSA signatures and compare with the original received
signature. Return an error if there is a mismatch.
This will reject various cases including garbage after signature
(thanks to Antti Karjalainen and Tuomo Untinen from the Codenomicon CROSS
program for discovering this case) and use of BER or invalid ASN.1 INTEGERs
(negative or with leading zeroes).
Further analysis was conducted and fixes were developed by Stephen Henson
of the OpenSSL core team.
(CVE-2014-8275)
[Steve Henson]
*) Correct Bignum squaring. Bignum squaring (BN_sqr) may produce incorrect
results on some platforms, including x86_64. This bug occurs at random
with a very low probability, and is not known to be exploitable in any
way, though its exact impact is difficult to determine. Thanks to Pieter
Wuille (Blockstream) who reported this issue and also suggested an initial
fix. Further analysis was conducted by the OpenSSL development team and
Adam Langley of Google. The final fix was developed by Andy Polyakov of
the OpenSSL core team.
(CVE-2014-3570)
[Andy Polyakov]
*) Do not resume sessions on the server if the negotiated protocol
version does not match the session's version. Resuming with a different
version, while not strictly forbidden by the RFC, is of questionable
sanity and breaks all known clients.
[David Benjamin, Emilia Käsper]
*) Tighten handling of the ChangeCipherSpec (CCS) message: reject
early CCS messages during renegotiation. (Note that because
renegotiation is encrypted, this early CCS was not exploitable.)
[Emilia Käsper]
*) Tighten client-side session ticket handling during renegotiation:
ensure that the client only accepts a session ticket if the server sends
the extension anew in the ServerHello. Previously, a TLS client would
reuse the old extension state and thus accept a session ticket if one was
announced in the initial ServerHello.
Similarly, ensure that the client requires a session ticket if one
was advertised in the ServerHello. Previously, a TLS client would
ignore a missing NewSessionTicket message.
[Emilia Käsper]
Changes between 1.0.1i and 1.0.1j [15 Oct 2014]
*) SRTP Memory Leak.
A flaw in the DTLS SRTP extension parsing code allows an attacker, who
sends a carefully crafted handshake message, to cause OpenSSL to fail
to free up to 64k of memory causing a memory leak. This could be
exploited in a Denial Of Service attack. This issue affects OpenSSL
1.0.1 server implementations for both SSL/TLS and DTLS regardless of
whether SRTP is used or configured. Implementations of OpenSSL that
have been compiled with OPENSSL_NO_SRTP defined are not affected.
The fix was developed by the OpenSSL team.
(CVE-2014-3513)
[OpenSSL team]
*) Session Ticket Memory Leak.
When an OpenSSL SSL/TLS/DTLS server receives a session ticket the
integrity of that ticket is first verified. In the event of a session
ticket integrity check failing, OpenSSL will fail to free memory
causing a memory leak. By sending a large number of invalid session
tickets an attacker could exploit this issue in a Denial Of Service
attack.
(CVE-2014-3567)
[Steve Henson]
*) Build option no-ssl3 is incomplete.
When OpenSSL is configured with "no-ssl3" as a build option, servers
could accept and complete a SSL 3.0 handshake, and clients could be
configured to send them.
(CVE-2014-3568)
[Akamai and the OpenSSL team]
*) Add support for TLS_FALLBACK_SCSV.
Client applications doing fallback retries should call
SSL_set_mode(s, SSL_MODE_SEND_FALLBACK_SCSV).
(CVE-2014-3566)
[Adam Langley, Bodo Moeller]
*) Add additional DigestInfo checks.
Reencode DigestInto in DER and check against the original when
verifying RSA signature: this will reject any improperly encoded
DigestInfo structures.
Note: this is a precautionary measure and no attacks are currently known.
[Steve Henson]
Changes between 1.0.1h and 1.0.1i [6 Aug 2014]
*) Fix SRP buffer overrun vulnerability. Invalid parameters passed to the
SRP code can be overrun an internal buffer. Add sanity check that
g, A, B < N to SRP code.
Thanks to Sean Devlin and Watson Ladd of Cryptography Services, NCC
Group for discovering this issue.
(CVE-2014-3512)
[Steve Henson]
*) A flaw in the OpenSSL SSL/TLS server code causes the server to negotiate
TLS 1.0 instead of higher protocol versions when the ClientHello message
is badly fragmented. This allows a man-in-the-middle attacker to force a
downgrade to TLS 1.0 even if both the server and the client support a
higher protocol version, by modifying the client's TLS records.
Thanks to David Benjamin and Adam Langley (Google) for discovering and
researching this issue.
(CVE-2014-3511)
[David Benjamin]
*) OpenSSL DTLS clients enabling anonymous (EC)DH ciphersuites are subject
to a denial of service attack. A malicious server can crash the client
with a null pointer dereference (read) by specifying an anonymous (EC)DH
ciphersuite and sending carefully crafted handshake messages.
Thanks to Felix Gröbert (Google) for discovering and researching this
issue.
(CVE-2014-3510)
[Emilia Käsper]
*) By sending carefully crafted DTLS packets an attacker could cause openssl
to leak memory. This can be exploited through a Denial of Service attack.
Thanks to Adam Langley for discovering and researching this issue.
(CVE-2014-3507)
[Adam Langley]
*) An attacker can force openssl to consume large amounts of memory whilst
processing DTLS handshake messages. This can be exploited through a
Denial of Service attack.
Thanks to Adam Langley for discovering and researching this issue.
(CVE-2014-3506)
[Adam Langley]
*) An attacker can force an error condition which causes openssl to crash
whilst processing DTLS packets due to memory being freed twice. This
can be exploited through a Denial of Service attack.
Thanks to Adam Langley and Wan-Teh Chang for discovering and researching
this issue.
(CVE-2014-3505)
[Adam Langley]
*) If a multithreaded client connects to a malicious server using a resumed
session and the server sends an ec point format extension it could write
up to 255 bytes to freed memory.
Thanks to Gabor Tyukasz (LogMeIn Inc) for discovering and researching this
issue.
(CVE-2014-3509)
[Gabor Tyukasz]
*) A malicious server can crash an OpenSSL client with a null pointer
dereference (read) by specifying an SRP ciphersuite even though it was not
properly negotiated with the client. This can be exploited through a
Denial of Service attack.
Thanks to Joonas Kuorilehto and Riku Hietamäki (Codenomicon) for
discovering and researching this issue.
(CVE-2014-5139)
[Steve Henson]
*) A flaw in OBJ_obj2txt may cause pretty printing functions such as
X509_name_oneline, X509_name_print_ex et al. to leak some information
from the stack. Applications may be affected if they echo pretty printing
output to the attacker.
Thanks to Ivan Fratric (Google) for discovering this issue.
(CVE-2014-3508)
[Emilia Käsper, and Steve Henson]
*) Fix ec_GFp_simple_points_make_affine (thus, EC_POINTs_mul etc.)
for corner cases. (Certain input points at infinity could lead to
bogus results, with non-infinity inputs mapped to infinity too.)
[Bodo Moeller]
Changes between 1.0.1g and 1.0.1h [5 Jun 2014]
*) Fix for SSL/TLS MITM flaw. An attacker using a carefully crafted
handshake can force the use of weak keying material in OpenSSL
SSL/TLS clients and servers.
Thanks to KIKUCHI Masashi (Lepidum Co. Ltd.) for discovering and
researching this issue. (CVE-2014-0224)
[KIKUCHI Masashi, Steve Henson]
*) Fix DTLS recursion flaw. By sending an invalid DTLS handshake to an
OpenSSL DTLS client the code can be made to recurse eventually crashing
in a DoS attack.
Thanks to Imre Rad (Search-Lab Ltd.) for discovering this issue.
(CVE-2014-0221)
[Imre Rad, Steve Henson]
*) Fix DTLS invalid fragment vulnerability. A buffer overrun attack can
be triggered by sending invalid DTLS fragments to an OpenSSL DTLS
client or server. This is potentially exploitable to run arbitrary
code on a vulnerable client or server.
Thanks to Jüri Aedla for reporting this issue. (CVE-2014-0195)
[Jüri Aedla, Steve Henson]
*) Fix bug in TLS code where clients enable anonymous ECDH ciphersuites
are subject to a denial of service attack.
Thanks to Felix Gröbert and Ivan Fratric at Google for discovering
this issue. (CVE-2014-3470)
[Felix Gröbert, Ivan Fratric, Steve Henson]
*) Harmonize version and its documentation. -f flag is used to display
compilation flags.
[mancha <[email protected]>]
*) Fix eckey_priv_encode so it immediately returns an error upon a failure
in i2d_ECPrivateKey.
[mancha <[email protected]>]
*) Fix some double frees. These are not thought to be exploitable.
[mancha <[email protected]>]
Changes between 1.0.1f and 1.0.1g [7 Apr 2014]
*) A missing bounds check in the handling of the TLS heartbeat extension
can be used to reveal up to 64k of memory to a connected client or
server.
Thanks for Neel Mehta of Google Security for discovering this bug and to
Adam Langley <[email protected]> and Bodo Moeller <[email protected]> for
preparing the fix (CVE-2014-0160)
[Adam Langley, Bodo Moeller]
*) Fix for the attack described in the paper "Recovering OpenSSL
ECDSA Nonces Using the FLUSH+RELOAD Cache Side-channel Attack"
by Yuval Yarom and Naomi Benger. Details can be obtained from:
http://eprint.iacr.org/2014/140
Thanks to Yuval Yarom and Naomi Benger for discovering this
flaw and to Yuval Yarom for supplying a fix (CVE-2014-0076)
[Yuval Yarom and Naomi Benger]
*) TLS pad extension: draft-agl-tls-padding-03
Workaround for the "TLS hang bug" (see FAQ and PR#2771): if the
TLS client Hello record length value would otherwise be > 255 and
less that 512 pad with a dummy extension containing zeroes so it
is at least 512 bytes long.
[Adam Langley, Steve Henson]
Changes between 1.0.1e and 1.0.1f [6 Jan 2014]
*) Fix for TLS record tampering bug. A carefully crafted invalid
handshake could crash OpenSSL with a NULL pointer exception.
Thanks to Anton Johansson for reporting this issues.
(CVE-2013-4353)
*) Keep original DTLS digest and encryption contexts in retransmission
structures so we can use the previous session parameters if they need
to be resent. (CVE-2013-6450)
[Steve Henson]
*) Add option SSL_OP_SAFARI_ECDHE_ECDSA_BUG (part of SSL_OP_ALL) which
avoids preferring ECDHE-ECDSA ciphers when the client appears to be
Safari on OS X. Safari on OS X 10.8..10.8.3 advertises support for
several ECDHE-ECDSA ciphers, but fails to negotiate them. The bug
is fixed in OS X 10.8.4, but Apple have ruled out both hot fixing
10.8..10.8.3 and forcing users to upgrade to 10.8.4 or newer.