From b58a51ad4de7fa1f88d192eb2cf30c14467948e3 Mon Sep 17 00:00:00 2001 From: Connor Goggins Date: Tue, 25 Feb 2020 01:55:24 -0800 Subject: [PATCH] Added nightly test for RNN ReLU & tanh, LSTM, GRU --- tests/nightly/test_large_array.py | 46 +++++++++++++++++++++---------- 1 file changed, 32 insertions(+), 14 deletions(-) diff --git a/tests/nightly/test_large_array.py b/tests/nightly/test_large_array.py index 2a4149058eb2..7dbc19415f8f 100644 --- a/tests/nightly/test_large_array.py +++ b/tests/nightly/test_large_array.py @@ -39,6 +39,7 @@ SMALL_Y = 50 LARGE_SIZE = LARGE_X * SMALL_Y LARGE_TENSOR_SHAPE = 2**32 +RNN_LARGE_TENSOR = 2**28 def test_nn(): @@ -479,20 +480,6 @@ def check_embedding(): assert out.shape[0] == LARGE_TENSOR_SHAPE assert out.shape[1] == 1 - def check_rnn(): - data = nd.random_normal(shape=(LARGE_TENSOR_SHAPE/16, 4, 4)) - parameters = nd.random_normal(shape=(7,)) - state = nd.random_normal(shape=(1, 4, 1)) - mode = 'rnn_relu' - state_size = 1 - num_layers = 1 - - out = nd.RNN(data=data, parameters=parameters, state=state, mode=mode, - state_size=state_size, num_layers=num_layers) - - assert out.shape[0] == LARGE_TENSOR_SHAPE/16 - assert out.shape[1] == 4 - assert out.shape[2] == 1 def check_spatial_transformer(): data = nd.random_normal(shape=(2, 2**29, 1, 6)) @@ -509,6 +496,37 @@ def check_spatial_transformer(): assert res.shape[2] == 2 assert res.shape[3] == 6 + def check_rnn(): + data = nd.random_normal(shape=(RNN_LARGE_TENSOR, 4, 4)) + parameters_relu_tanh = nd.random_normal(shape=(7,)) + parameters_lstm = nd.random_normal(shape=(28,)) + parameters_gru = nd.random_normal(shape=(21,)) + state = nd.random_normal(shape=(1, 4, 1)) + state_cell = nd.random_normal(shape=(1, 4, 1)) + mode_relu = 'rnn_relu' + mode_tanh = 'rnn_tanh' + mode_lstm = 'lstm' + mode_gru = 'gru' + state_size = 1 + num_layers = 1 + + out_relu = nd.RNN(data=data, parameters=parameters_relu_tanh, state=state, mode=mode_relu, + state_size=state_size, num_layers=num_layers) + + out_tanh = nd.RNN(data=data, parameters=parameters_relu_tanh, state=state, mode=mode_tanh, + state_size=state_size, num_layers=num_layers) + + out_lstm = nd.RNN(data=data, parameters=parameters_lstm, state=state, mode=mode_lstm, + state_cell=state_cell, state_size=state_size, num_layers=num_layers) + + out_gru = nd.RNN(data=data, parameters=parameters_gru, state=state, mode=mode_gru, + state_size=state_size, num_layers=num_layers) + + for out in [out_relu, out_tanh, out_lstm, out_gru]: + assert out.shape[0] == RNN_LARGE_TENSOR + assert out.shape[1] == 4 + assert out.shape[2] == 1 + check_gluon_embedding() check_fully_connected() check_dense()