This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
/
Copy pathmultiarray.py
13400 lines (11326 loc) · 440 KB
/
multiarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=too-many-lines, unused-argument
"""numpy ndarray and util functions."""
try:
from __builtin__ import all as py_all
from __builtin__ import slice as py_slice
except ImportError:
from builtins import all as py_all
from builtins import slice as py_slice
from array import array as native_array
import functools
import ctypes
import sys
import datetime
import warnings
import numpy as _np
from .. import _deferred_compute as dc
from ..autograd import is_recording
from ..ndarray import NDArray, dtype_np_to_mx, _GRAD_REQ_MAP
from ..ndarray import indexing_key_expand_implicit_axes, get_indexing_dispatch_code,\
get_oshape_of_gather_nd_op
from ..ndarray._internal import _set_np_ndarray_class
from . import _op as _mx_np_op
from ..base import check_call, _LIB, NDArrayHandle, c_array, mx_int, mx_int64
from ..base import mx_real_t, c_array_buf, mx_uint, numeric_types, integer_types
from ..runtime import Features
from ..device import Device
from ..util import set_module, wrap_np_unary_func, wrap_np_binary_func,\
is_np_default_dtype, wrap_ctx_to_device_func,\
dtype_from_number, wrap_data_api_statical_func,\
wrap_sort_functions
from ..device import current_device
from ..ndarray import numpy as _mx_nd_np
from ..ndarray.numpy import _internal as _npi
from ..ndarray.ndarray import _storage_type
from ..dlpack import ndarray_from_numpy, ndarray_to_dlpack_for_write, DLDeviceType,\
ndarray_from_dlpack
from .utils import _get_np_op
from .fallback import * # pylint: disable=wildcard-import,unused-wildcard-import
from . import fallback
__all__ = ['ndarray', 'empty', 'empty_like', 'array', 'shape', 'median',
'zeros', 'zeros_like', 'ones', 'ones_like', 'full', 'full_like', 'all', 'any', 'broadcast_to',
'add', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'fmod', 'pow', 'power', 'bitwise_not',
'delete', 'trace', 'transpose', 'copy', 'moveaxis', 'reshape', 'dot',
'arctan2', 'atan2', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'bitwise_invert', 'invert',
'sqrt', 'cbrt', 'abs', 'absolute', 'fabs', 'exp', 'expm1', 'arcsin', 'asin', 'arccos', 'acos', 'arctan',
'atan', 'sign', 'log', 'degrees', 'log2', 'log1p', 'rint', 'radians', 'reciprocal', 'square',
'negative', 'histogram', 'fix', 'ceil', 'floor', 'trunc', 'logical_not', 'arcsinh', 'asinh',
'arccosh', 'acosh', 'arctanh', 'atanh', 'append', 'argsort', 'sort', 'tensordot', 'eye', 'linspace',
'logspace', 'expand_dims', 'tile', 'arange', 'array_split', 'split', 'hsplit', 'vsplit',
'dsplit', 'flatnonzero', 'tril_indices', 'concatenate', 'concat', 'stack', 'vstack', 'row_stack',
'column_stack', 'hstack', 'dstack', 'average', 'mean', 'maximum', 'fmax', 'minimum', 'fmin',
'amax', 'amin', 'max', 'min', 'swapaxes', 'clip', 'argmax', 'argmin', 'std', 'var', 'insert',
'indices', 'copysign', 'ravel', 'unravel_index', 'diag_indices_from', 'hanning', 'hamming', 'blackman',
'logical_and', 'logical_or', 'logical_xor',
'flip', 'flipud', 'fliplr', 'around', 'round', 'round_', 'arctan2', 'hypot',
'triu_indices_from', 'triu_indices', 'tri',
'bitwise_and', 'bitwise_xor', 'bitwise_or', 'rad2deg', 'deg2rad',
'unique', 'lcm', 'gcd', 'tril', 'triu', 'identity', 'take', 'ldexp', 'vdot', 'inner', 'outer',
'cross', 'kron', 'equal', 'not_equal', 'interp',
'greater', 'less', 'greater_equal', 'less_equal', 'roll', 'rot90', 'einsum', 'true_divide', 'nonzero',
'quantile', 'percentile', 'shares_memory', 'may_share_memory', 'diff', 'ediff1d', 'resize', 'matmul',
'nan_to_num', 'isnan', 'isinf', 'isposinf', 'isneginf', 'isfinite', 'polyval', 'where', 'bincount',
'atleast_1d', 'atleast_2d', 'atleast_3d', 'fill_diagonal', 'squeeze',
'diagflat', 'repeat', 'prod', 'pad', 'cumsum', 'sum', 'rollaxis', 'diag', 'diagonal',
'positive', 'logaddexp', 'floor_divide', 'permute_dims', 'bitwise_left_shift', 'bitwise_right_shift',
'asarray', 'from_dlpack']
__all__ += fallback.__all__
# Return code for dispatching indexing function call
_NDARRAY_UNSUPPORTED_INDEXING = -1
_NDARRAY_BASIC_INDEXING = 0
_NDARRAY_ADVANCED_INDEXING = 1
_NDARRAY_EMPTY_TUPLE_INDEXING = 2
# Return code for 0-d boolean array handler
_NDARRAY_NO_ZERO_DIM_BOOL_ARRAY = -1
_NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE = 0
_NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE = 1
_SIGNED_INT32_UPPER_LIMIT = (2**31 - 1)
# Caching whether MXNet was built with INT64 support or not
_INT64_TENSOR_SIZE_ENABLED = None
def _int64_enabled():
global _INT64_TENSOR_SIZE_ENABLED
if _INT64_TENSOR_SIZE_ENABLED is None:
_INT64_TENSOR_SIZE_ENABLED = Features().is_enabled('INT64_TENSOR_SIZE')
return _INT64_TENSOR_SIZE_ENABLED
# This function is copied from ndarray.py since pylint
# keeps giving false alarm error of undefined-all-variable
def _new_alloc_handle(shape, device, delay_alloc, dtype=mx_real_t): # pylint: disable=redefined-outer-name
"""Return a new handle with specified shape and device.
Empty handle is only used to hold results.
Returns
-------
handle
A new empty `ndarray` handle.
"""
hdl = NDArrayHandle()
if _int64_enabled():
check_call(_LIB.MXNDArrayCreate64(
c_array_buf(mx_int64, native_array('q', shape)),
ctypes.c_int(len(shape)),
ctypes.c_int(device.device_typeid),
ctypes.c_int(device.device_id),
ctypes.c_int(int(delay_alloc)),
ctypes.c_int(int(dtype_np_to_mx(dtype))),
ctypes.byref(hdl)))
else:
# When shape is larger than uint32 then there is an overflow error at python end itself.
# It needs to be caught here since the call doesn't even reach backend.
array_size = 1
for idx in shape:
array_size = array_size * idx
if array_size > _SIGNED_INT32_UPPER_LIMIT:
raise Exception("[_new_alloc_handle] Size of tensor you are trying to allocate is " +
"larger than 2^31 elements. Please build with flag " +
"USE_INT64_TENSOR_SIZE=1")
check_call(_LIB.MXNDArrayCreate(
c_array_buf(mx_uint, native_array('I', shape)),
mx_uint(len(shape)),
ctypes.c_int(device.device_typeid),
ctypes.c_int(device.device_id),
ctypes.c_int(int(delay_alloc)),
ctypes.c_int(int(dtype_np_to_mx(dtype))),
ctypes.byref(hdl)))
return hdl
def _reshape_view(a, *shape): # pylint: disable=redefined-outer-name
"""Returns a **view** of this array with a new shape without altering any data.
Parameters
----------
shape : tuple of int, or n ints
The new shape should not change the array size, namely
``np.prod(new_shape)`` should be equal to ``np.prod(a.shape)``.
Some dimensions of the shape can take special value -1, which
infers the dimension of the output shape by using the remainder of the
input dimensions keeping the size of the new array same as that of the input array.
At most one dimension of shape can be -1.
Returns
-------
ndarray
An array with desired shape that shares data with this array.
"""
if len(shape) == 1 and isinstance(shape[0], (list, tuple)):
shape = shape[0]
handle = NDArrayHandle()
check_call(_LIB.MXNDArrayReshape64(a.handle,
len(shape),
c_array(ctypes.c_int64, shape),
False,
ctypes.byref(handle)))
return ndarray(handle=handle, writable=a.writable)
def _as_mx_np_array(object, device=None, zero_copy=False):
"""Convert arrays or any array member of container to mxnet.numpy.ndarray on device."""
if object is None or isinstance(object, ndarray):
return object
elif isinstance(object, _np.ndarray):
from_numpy = ndarray_from_numpy(ndarray, array)
return from_numpy(object, zero_copy and object.flags['C_CONTIGUOUS'])
elif isinstance(object, (integer_types, numeric_types)):
return object
elif isinstance(object, (_np.bool_, _np.bool)):
return array(object, dtype=_np.bool_, device=device)
elif isinstance(object, (list, tuple)):
tmp = [_as_mx_np_array(arr, device=device, zero_copy=zero_copy) for arr in object]
return object.__class__(tmp)
else:
raise TypeError('Does not support converting {} to mx.np.ndarray.'.format(str(type(object))))
def _as_onp_array(object, cur_device=None):
"""Convert object to numpy.ndarray."""
def _update_device(cur_device, tmp_device):
if cur_device is None:
cur_device = tmp_device
elif tmp_device is not None and cur_device != tmp_device:
raise ValueError('Ambiguous to set the device for the output ndarray since' # pylint: disable=too-few-format-args
' input ndarrays are allocated on different devices: {} and {}'
.format(str(cur_device, tmp_device)))
return cur_device
if isinstance(object, ndarray):
return object.asnumpy(), object.device
elif isinstance(object, (list, tuple)):
tmp = []
for arr in object:
arr, tmp_device = _as_onp_array(arr, cur_device)
tmp.append(arr)
cur_device = _update_device(cur_device, tmp_device)
return object.__class__(tmp), cur_device
elif isinstance(object, dict):
tmp = dict()
for key, value in object.items():
value, tmp_device = _as_onp_array(value, cur_device)
tmp[key] = value
cur_device = _update_device(cur_device, tmp_device)
return object.__class__(tmp), cur_device
else:
return object, cur_device
# Have to use 0 as default value for stype since pylint does not allow
# importing _STORAGE_TYPE_DEFAULT from ndarray.py.
def _np_ndarray_cls(handle, writable=True, stype=0):
if stype == -1:
stype = _storage_type(handle)
if stype != 0:
raise ValueError('_np_ndarray_cls currently only supports default storage '
'type, while received stype = {}'.format(stype))
return ndarray(handle, writable=writable)
_set_np_ndarray_class(_np_ndarray_cls)
_NUMPY_ARRAY_FUNCTION_DICT = {}
_NUMPY_ARRAY_UFUNC_DICT = {}
_FALLBACK_ARRAY_FUNCTION_WARNED_RECORD = {}
_FALLBACK_ARRAY_UFUNC_WARNED_RECORD = {}
def wrap_mxnp_np_ufunc(func):
"""
A convenience decorator for wrapping for python overload-able ops to provide type
casting for mixed use of mx_np and onp inputs.
Parameters
----------
func : a python overload-able binary function to be wrapped for type casting.
Returns
-------
Function
A function wrapped with type casted.
"""
@functools.wraps(func)
def _wrap_mxnp_np_ufunc(x1, x2):
if isinstance(x2, _np.ndarray):
x2 = _as_mx_np_array(x2, device=x1.device)
return func(x1, x2)
return _wrap_mxnp_np_ufunc
@set_module('mxnet.numpy')
class ndarray(NDArray): # pylint: disable=invalid-name
"""
ndarray(handle, writable=True):
An array object represents a multidimensional, homogeneous array of fixed-size items.
An associated data-type object describes the format of each element in the array
(its byte-order, how many bytes it occupies in memory, whether it is an integer, a
floating point number, or something else, etc.). Arrays should be constructed using
`array`, `zeros` or `empty`. Currently, only c-contiguous arrays are supported.
Arrays should be constructed using `array`, `zeros` or `empty` (refer
to the See Also section below). The parameters given here refer to
a low-level method (`ndarray(...)`) for instantiating an array.
For more information, refer to the `mxnet.numpy` module and examine the
methods and attributes of an array.
Parameters
----------
handle: int
The ndarray handle in backend (C++).
writable: bool
Indicates whether inplace-assignment is allowed for the array.
Attributes
----------
T : ndarray
Transpose of the array.
dtype : dtype object
Describes the format of the elements in the array.
size : int
Number of elements in the array.
ndim : int
The array's number of dimensions.
shape : tuple of ints
Shape of the array.
See Also
--------
array : Construct an array.
zeros : Create an array, each element of which is zero.
empty : Create an array, but leave its allocated memory unchanged (i.e.,
it contains "garbage").
"""
@staticmethod
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # pylint: disable=bad-staticmethod-argument
"""
Dispatch official NumPy unary/binary operator calls on mxnet.numpy.ndarray
to this function. The operators must comply with the ufunc definition in NumPy.
The following code is adapted from CuPy.
Casting rules for operator with mx_np and onp (inplace op will keep its type)
| Expression | a type | b type | out type|
| --- | --- | --- | --- |
| `a += b` | onp | mx_np | onp |
| `a += b` | mx_np | onp | mx_np |
| `c = a + b` | onp | mx_np | mx_np |
| `c = a + b` | mx_np | onp | mx_np |
"""
ufunc_list = ["add", "subtract", "multiply", "divide", "true_divide", "floor_divide", "power",
"remainder", "bitwise_and", "bitwise_or", "bitwise_xor", "left_shift", "right_shift",
"greater", "greater_equal", "less", "less_equal", "not_equal", "equal", "matmul"]
if 'out' in kwargs:
# need to unfold tuple argument in kwargs
out = kwargs['out']
if len(out) != 1:
raise ValueError('The `out` parameter must have exactly one ndarray')
kwargs['out'] = out[0]
if method == '__call__':
name = ufunc.__name__
mx_ufunc = _NUMPY_ARRAY_UFUNC_DICT.get(name, None)
onp_op = _get_np_op(name)
if mx_ufunc is None:
# try to fallback to official NumPy op
if is_recording():
raise ValueError("Falling back to NumPy operator {} with autograd active is not supported."
"Please consider moving the operator to the outside of the autograd scope.")\
.format(name)
new_inputs = [arg.asnumpy() if isinstance(arg, ndarray) else arg for arg in inputs]
if onp_op not in _FALLBACK_ARRAY_UFUNC_WARNED_RECORD:
import logging
logging.warning("np.%s is a fallback operator, "
"which is actually using official numpy's implementation", name)
_FALLBACK_ARRAY_UFUNC_WARNED_RECORD[onp_op] = True
out = onp_op(*new_inputs, **kwargs)
return _as_mx_np_array(out, device=inputs[0].device)
# ops with np mx_np
elif name in ufunc_list and isinstance(inputs[0], _np.ndarray):
# inplace
if 'out' in kwargs:
new_inputs = [arg.asnumpy() if isinstance(arg, ndarray) else arg for arg in inputs]
return onp_op(*new_inputs, **kwargs)
else:
new_inputs = [_as_mx_np_array(arg, device=inputs[1].device)
if isinstance(arg, _np.ndarray) else arg for arg in inputs]
return mx_ufunc(*new_inputs, **kwargs)
else:
return mx_ufunc(*inputs, **kwargs)
else:
return NotImplemented
@staticmethod
def __array_function__(self, func, types, args, kwargs): # pylint: disable=bad-staticmethod-argument
"""
Dispatch official NumPy operators that comply with the array function protocol to
this function.
"""
mx_np_func = _NUMPY_ARRAY_FUNCTION_DICT.get(func, None)
func_name = func.__name__
if mx_np_func is None:
# try to fallback to official NumPy op
if is_recording():
raise ValueError("Falling back to NumPy operator {} with autograd active is not supported."
"Please consider moving the operator to the outside of the autograd scope.")\
.format(func)
cur_device = None
new_args, cur_device = _as_onp_array(args, cur_device)
new_kwargs, cur_device = _as_onp_array(kwargs, cur_device)
if cur_device is None:
raise ValueError('Unknown device for the input ndarrays. It is probably a bug. Please'
' create an issue on GitHub.')
if func not in _FALLBACK_ARRAY_FUNCTION_WARNED_RECORD:
import logging
logging.warning("np.%s is a fallback operator, "
"which is actually using official numpy's implementation.", func_name)
_FALLBACK_ARRAY_FUNCTION_WARNED_RECORD[func] = True
out = func(*new_args, **new_kwargs)
return _as_mx_np_array(out, device=cur_device)
else:
if py_all(issubclass(t, ndarray) for t in types):
return mx_np_func(*args, **kwargs)
else:
try:
cur_device = next(a.device for a in args if hasattr(a, 'device'))
except StopIteration:
cur_device = next(a.device for a in kwargs.values() if hasattr(a, 'device'))
new_args = _as_mx_np_array(args, device=cur_device,
zero_copy=func_name in {'may_share_memory', 'shares_memory'})
new_kwargs = {k: _as_mx_np_array(v, cur_device) for k, v in kwargs.items()}
return mx_np_func(*new_args, **new_kwargs)
def __array_namespace__(self, api_version=None):
"""
Returns an object that has all the array API functions on it.
Notes
-----
This is a standard API in
https://data-apis.org/array-api/latest/API_specification/array_object.html#array-namespace-self-api-version-none.
Parameters
----------
self : ndarray
The indexing key.
api_version : Optional, string
string representing the version of the array API specification to be returned, in `YYYY.MM` form.
If it is None, it should return the namespace corresponding to latest version of the array API
specification.
"""
if api_version is not None:
try:
date = datetime.datetime.strptime(api_version, '%Y.%m')
if date.year != 2021:
raise ValueError
except ValueError:
raise ValueError(f"Unrecognized array API version: {api_version!r}")
return sys.modules[self.__module__]
def __dlpack__(self, stream=None):
"""Exports the array for consumption by from_dlpack() as a DLPack capsule.
Parameters
----------
stream : int, optional
A Python integer representing a pointer to a stream (CUDA or ROCm).
Stream is provided by the consumer to the producer to instruct the producer
to ensure that operations can safely be performed on the array. The pointer must
be positive integer or -1. If stream is -1, the value must be used by the consumer
to signal "producer must not perform any synchronization".
Returns
-------
capsule : PyCapsule
A DLPack capsule for the array, containing a DLPackManagedTensor.
"""
if stream is not None:
if type(stream) is not int:
raise TypeError('The input stream must be int or None')
if self.device.device_type != "gpu":
raise ValueError('Stream {} is not supported in current device {}'\
.format(stream, self.device.device_type))
if stream != -1:
check_call(_LIB.MXPushStreamDep(self.handle, ctypes.c_int64(stream)))
to_dlpack_write = ndarray_to_dlpack_for_write()
return to_dlpack_write(self)
def __dlpack_device__(self):
"""Returns device type and device ID in DLPack format"""
devtype_map = {'cpu': DLDeviceType.DLCPU,
'gpu': DLDeviceType.DLGPU,
'cpu_pinned': DLDeviceType.DLCPUPINNED}
if self.device.device_type not in devtype_map:
raise ValueError('Unkown device type {} for DLPack'.format(self.device.device_type))
return (devtype_map[self.device.device_type], self.device.device_id)
def _get_np_basic_indexing(self, key):
"""
This function indexes ``self`` with a tuple of `slice` objects only.
"""
key_nd = tuple(idx for idx in key if idx is not None)
if len(key_nd) < self.ndim:
raise RuntimeError(
'too few indices after normalization: expected `ndim` ({}) '
'but got {}. This is a bug, please report it!'
''.format(self.ndim, len(key_nd))
)
if len(key_nd) > self.ndim:
raise IndexError(
'too many indices ({}) for array with {} dimensions'
''.format(len(key_nd), self.ndim)
)
none_axes = [ax for ax in range(len(key)) if key[ax] is None] # pylint: disable=invalid-name
slc_key, int_axes = self._basic_indexing_key_int_to_slice(key_nd)
new_axes = self._new_axes_after_basic_indexing(none_axes, key)
# Check bounds for integer axes
for ax in int_axes: # pylint: disable=invalid-name
if not -self.shape[ax] <= key_nd[ax] < self.shape[ax]:
raise IndexError(
'index {} is out of bounds for axis {} with size {}'
''.format(key_nd[ax], ax, self.shape[ax]))
if self._basic_indexing_slice_is_contiguous(slc_key, self.shape):
# Create a shared-memory view by using low-level flat slicing
flat_begin, flat_end = self._basic_indexing_contiguous_flat_begin_end(
slc_key, self.shape
)
handle = NDArrayHandle()
flat_self = self.reshape_view(-1)
if _int64_enabled():
check_call(
_LIB.MXNDArraySlice64(
flat_self.handle,
ctypes.c_int64(flat_begin),
ctypes.c_int64(flat_end),
ctypes.byref(handle),
)
)
else:
check_call(
_LIB.MXNDArraySlice(
flat_self.handle,
ctypes.c_uint32(flat_begin),
ctypes.c_uint32(flat_end),
ctypes.byref(handle),
)
)
sliced_shape = self._basic_indexing_sliced_shape(slc_key, self.shape)
sliced = self.__class__(handle=handle, writable=self.writable)
if 0 in sliced_shape:
sliced = sliced.reshape(sliced_shape)
else:
sliced = sliced.reshape_view(sliced_shape)
else:
begin, end, step = self._basic_indexing_key_to_begin_end_step(
slc_key, self.shape, keep_none=True
)
sliced = _npi.slice(self, begin, end, step)
# Reshape to final shape due to integer and `None` entries in `key`.
final_shape = [sliced.shape[i] for i in range(sliced.ndim) if i not in int_axes]
for ax in new_axes: # pylint: disable=invalid-name
final_shape.insert(ax, 1)
if sliced.size == 0:
return sliced.reshape(tuple(final_shape))
else:
return sliced.reshape_view(tuple(final_shape))
def _get_np_empty_tuple_indexing(self, key):
new_shape = []
num_none = 0
for i, idx in enumerate(key):
if idx is None:
new_shape.append(1) # expand dimension
num_none += 1
elif idx == ():
new_shape.append(0) # 0 shape
elif idx == slice(None, None, None):
new_shape.append(self.shape[i - num_none])
return empty(new_shape, dtype=self.dtype)
def _get_np_advanced_indexing(self, key):
idcs, new_axes = self._get_index_nd(key)
if type(idcs) == NDArray: # pylint: disable=unidiomatic-typecheck
idcs = idcs.as_np_ndarray()
else:
idcs = _mx_nd_np.stack([i if isinstance(i, self.__class__) else i.as_np_ndarray() for i in idcs])
sliced = _npi.gather_nd(self, idcs)
# Reshape due to `None` entries in `key`.
if new_axes:
final_shape = [sliced.shape[i] for i in range(sliced.ndim)]
for ax in new_axes: # pylint: disable=invalid-name
final_shape.insert(ax, 1)
return sliced.reshape(tuple(final_shape))
else:
return sliced
def _set_np_advanced_indexing(self, key, value):
"""This function is called by __setitem__ when key is an advanced index."""
idcs, new_axes = self._get_index_nd(key)
if type(idcs) == NDArray: # pylint: disable=unidiomatic-typecheck
idcs = idcs.as_np_ndarray()
else:
idcs = _mx_nd_np.stack([i if isinstance(i, self.__class__) else i.as_np_ndarray() for i in idcs])
vshape = get_oshape_of_gather_nd_op(self.shape, idcs.shape)
value_nd = self._prepare_value_nd(value, bcast_shape=vshape, squeeze_axes=new_axes)
self._scatter_set_nd(value_nd, idcs)
# pylint: disable=redefined-outer-name
def _get_np_boolean_indexing(self, key, ndim, shape):
"""
There are two types of boolean indices (which are equivalent,
for the most part though). This function will handle single
boolean indexing for higher speed.
If this is not the case, it is instead expanded into (multiple)
integer array indices and will be handled by advanced indexing.
"""
key_shape = key.shape
key_ndim = len(key_shape)
if ndim < key_ndim:
raise IndexError('too many indices, whose ndim = {}, for array with ndim = {}'
.format(key_ndim, ndim))
for i in range(key_ndim):
if key_shape[i] != shape[i]:
raise IndexError('boolean index did not match indexed array along dimension {};'
' dimension is {} but corresponding boolean dimension is {}'
.format(i, shape[i], key_shape[i]))
remaining_dims = shape[key_ndim:]
data = _reshape_view(self, -1, *remaining_dims)
key = _reshape_view(key, -1)
if data.size == 0 and key.size == 0:
return data
return _reshape_view(_npi.boolean_mask(data, key), -1, *remaining_dims)
def _set_np_boolean_indexing(self, key, value):
"""
There are two types of boolean indices (which are equivalent,
for the most part though). This function will handle single boolean assign for higher speed.
If this is not the case, it is instead expanded into (multiple)
integer array indices and will be handled by advanced assign.
"""
if isinstance(value, numeric_types):
_npi.boolean_mask_assign_scalar(data=self, mask=key,
value=int(value) if isinstance(value, bool) else value,
start_axis=0, out=self)
elif isinstance(value, ndarray):
_npi.boolean_mask_assign_tensor(data=self, mask=key, value=value, start_axis=0, out=self)
else:
raise NotImplementedError(f'type {type(value)} is not supported.')
# pylint: disable=too-many-return-statements
def __getitem__(self, key):
"""Return self[key].
Returns a sliced view of this array if the elements fetched are contiguous in memory;
otherwise, returns a newly created NDArray.
This functions supports advanced indexing defined in the following reference with
some restrictions. Boolean indexing is supported only for a single boolean ndarray
as a key. Mixing boolean ndarray with other index types is not supported in ``advanced``
indexing.
For basic indexing, i.e., if ``key`` consists only of integers,
``slice``, ``Ellipsis`` (``...``) and ``None``, a mutable view is
returned that shares memory with this array if the accessed portion is
contiguous in memory.
Otherwise, a newly created ``ndarray`` is returned.
This functions supports advanced indexing as defined in `the NumPy
advanced indexing documentation
<https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing>`_.
Parameters
----------
key : int, slice, list, np.ndarray, mx.np.ndarray, or tuple of all previous types
Indexing key.
Examples
--------
The default is to give explicit indices for all axes:
>>> x = np.arange(6).reshape(2, 3)
>>> x
array([[0., 1., 2.],
[3., 4., 5.]])
>>> x[0, :2]
array([0., 1.])
>>> x[:, :-1]
array([[0., 1.],
[3., 4.]])
If fewer indices are given, they are automatically supplemented by an
appropriate number of ``slice(None)`` ("``:``") to the right. For
instance, a single integer indexes along the first axis:
>>> x[0]
array([0., 1., 2.])
>>> x[1:]
array([[3., 4., 5.]])
To omit a range of axes that should be kept as-is, an `Ellipsis`
("``...``") can be used:
>>> x = np.arange(16).reshape(2, 2, 2, 2)
>>> x[0, ..., 1]
array([[1., 3.],
[5., 7.]])
>>> x[0, :, :, 1] # equivalent
array([[1., 3.],
[5., 7.]])
New axes of length 1 can be created by inserting ``None``
(`numpy.newaxis`) in the index:
>>> x = np.arange(6).reshape(2, 3)
>>> x[None, :, :]
array([[[0., 1., 2.],
[3., 4., 5.]]])
>>> x[None, :, :].shape
(1, 2, 3)
If the indexed portion of the array is contiguous in memory, no data
is copied. Instead, a shared-memory view of the original array is
returned, and changes to that view affect the original array:
>>> x = np.arange(8).reshape(2, 2, 2)
>>> y = x[0] # contiguous
>>> y
array([[0., 1.],
[2., 3.]])
>>> y[:] = -1
>>> x
array([[[-1., -1.],
[-1., -1.]],
[[ 4., 5.],
[ 6., 7.]]])
>>> x = np.arange(8).reshape(2, 2, 2)
>>> y = x[1, :1, :] # contiguous
>>> y
array([[4., 5.]])
>>> y[:] = -1
>>> x
array([[[ 0., 1.],
[ 2., 3.]],
[[-1., -1.],
[ 6., 7.]]])
>>> x = np.arange(0, 8).reshape(2, 2, 2)
>>> y = x[:, :, 1] # not contiguous
>>> y
array([[1., 3.],
[5., 7.]])
>>> y[:] = -1
>>> x
array([[[0., 1.],
[2., 3.]],
[[4., 5.],
[6., 7.]]])
If the indexing key contains `list`, `numpy.ndarray` or `NDArray`
objects, advanced indexing is triggered, which always returns a
copy:
>>> x = np.arange(8).reshape(2, 2, 2)
>>> x[[0, 1]]
array([[[0., 1.],
[2., 3.]],
[[4., 5.],
[6., 7.]]])
>>> x[[0, 1], :] # equivalent
array([[[0., 1.],
[2., 3.]],
[[4., 5.],
[6., 7.]]])
>>> y = np.array([0, 1], dtype='int32')
>>> x[1:, y]
array([[[4., 5.],
[6., 7.]]])
>>> y = np.array([0, 1], dtype='int32')
>>> x[1:, y]
array([[[4., 5.],
[6., 7.]]])
Get negative elements in an ndarray through boolean array indexing
>>> x = np.array([1., -1., -2., 3])
>>> x[x < 0]
array([-1., -2.])
For more imformation related to boolean indexing, please refer to
https://docs.scipy.org/doc/numpy-1.17.0/reference/arrays.indexing.html.
"""
ndim = self.ndim # pylint: disable=redefined-outer-name
shape = self.shape # pylint: disable=redefined-outer-name
if isinstance(key, bool): # otherwise will be treated as 0 and 1
key = array(key, dtype=_np.bool, device=self.device)
if isinstance(key, list):
try:
new_key = _np.array(key)
if new_key.dtype == _np.bool_:
key = new_key
except Exception as err:
raise TypeError('{}'.format(str(err)))
if isinstance(key, _np.ndarray):
if dc.is_deferred_compute():
raise TypeError('Indexing with a numpy array is not supported in HybridBlock.')
if key.dtype == _np.bool_:
key = array(key, dtype='bool', device=self.device)
# Handle single boolean index of matching dimensionality and size first for higher speed
# If the boolean array is mixed with other idices, it is instead expanded into (multiple)
# integer array indices and will be handled by advanced indexing.
# Come before the check self.dim == 0 as it also handle the 0-dim case.
if isinstance(key, ndarray) and key.dtype == _np.bool_:
return self._get_np_boolean_indexing(key, ndim, shape)
all = __builtins__['all'] # `def all` below shadows the all builtin
if ndim == 0 and key != ():
raise IndexError('scalar tensor can only accept `()` as index')
# Handle simple cases for higher speed
if isinstance(key, tuple) and len(key) == 0:
return self
if isinstance(key, tuple) and len(key) == ndim\
and py_all(isinstance(idx, integer_types) for idx in key):
out = self
for idx in key:
out = out[idx]
return out
if isinstance(key, integer_types):
# Equivalent to isinstance(key, integer_types) case in numpy/_symbol.py
if key > shape[0] - 1:
raise IndexError(
'index {} is out of bounds for axis 0 with size {}'.format(
key, shape[0]))
return self._at(key)
elif isinstance(key, py_slice):
# Unlike numpy/_symbol.py, calls MXNDArraySlice64 writable memory
# sharing if key.step not in [None, 1]. Equivalent otherwise to
# isinstance(key, py_slice) case in _symbol.py otherwise.
if key.step is None or key.step == 1:
if key.start is not None or key.stop is not None:
return self._slice(key.start, key.stop)
else:
return self
elif key.step != 0:
start = [None] if key.start is None else key.start
stop = [None] if key.stop is None else key.stop
return _npi.slice(self, start, stop, key.step)
else:
raise ValueError("slice step cannot be zero")
elif isinstance(key, tuple) and \
all((isinstance(arr, NDArray) and _np.issubdtype(arr.dtype, _np.integer) and \
arr.ndim > 0) for arr in key):
# Equivalent case in numpy/_symbol.py
return _npi.advanced_indexing_multiple(self, _mx_nd_np.stack(key))
elif isinstance(key, tuple) and dc.is_deferred_compute():
# Equivalent to isinstance(key, tuple) case in numpy/_symbol.py
# Only enabled in deferred compute mode, as this codepath prevents
# memory sharing which may be desired in non-deferred compute
# imperative mode.
begin = []
end = []
step = []
new_shape = ()
assert len(key) # len(key) == 0 is handled a above
unsupported = False
for index in key:
if isinstance(index, py_slice):
if index.step is not None and index.step == 0:
raise ValueError("slice step cannot be zero")
begin.append(index.start)
end.append(index.stop)
step.append(index.step)
new_shape += (-2,)
elif isinstance(index, integer_types):
if index >= 0:
begin.append(index)
end.append(index+1)
step.append(1)
else:
begin.append(index)
end.append(index - 1)
step.append(-1)
new_shape += (-3,)
else:
unsupported = True
break
if not unsupported:
new_shape += (-4,)
sliced = _npi.slice(self, begin, end, step)
return _mx_nd_np.reshape(sliced, new_shape)
# Special handling for cases only supported in imperative mode
if dc.is_deferred_compute():
raise TypeError('The type of indexing used is not supported in HybridBlock.')
# For 0-d boolean indices: A new axis is added,
# but at the same time no axis is "used". So if we have True,
# we add a new axis (a bit like with np.newaxis). If it is
# False, we add a new axis, but this axis has 0 entries.
# prepend is defined to handle this case.
# prepend = _NDARRAY_NO_ZERO_DIM_BOOL_ARRAY/-1 means there is no 0-d boolean scalar
# prepend = _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE/0 means an zero dim must be expanded
# prepend = _NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE/1 means a new axis must be prepended
key, prepend = indexing_key_expand_implicit_axes(key, self.shape)
indexing_dispatch_code = get_indexing_dispatch_code(key)
if indexing_dispatch_code == _NDARRAY_EMPTY_TUPLE_INDEXING:
# won't be affected by zero-dim boolean indices
return self._get_np_empty_tuple_indexing(key)
elif indexing_dispatch_code == _NDARRAY_BASIC_INDEXING:
if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE:
return empty((0,) + self._get_np_basic_indexing(key).shape,
dtype=self.dtype, device=self.device)
if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE:
key = (_np.newaxis,) + key
return self._get_np_basic_indexing(key)
elif indexing_dispatch_code == _NDARRAY_ADVANCED_INDEXING:
if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE:
return empty((0,) + self._get_np_adanced_indexing(key).shape,
dtype=self.dtype, device=self.device)
if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE:
key = (_np.newaxis,) + key
return self._get_np_advanced_indexing(key)
else:
raise RuntimeError
# pylint: disable=inconsistent-return-statements
def __setitem__(self, key, value):
"""Sets ``self[key]`` to ``value``.
This functions supports advanced indexing as defined in `the NumPy
advanced indexing documentation
<https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing>`_,
with the restriction that boolean array indexing is not supported.
Parameters
----------
key : int, slice, list, np.ndarray, mx.np.ndarray, or tuple of all previous types
The indexing key.
value : scalar or array-like object that can be broadcast to the shape of self[key]
The value to set.
Examples
--------
>>> x = np.zeros((2, 3))
>>> x[:] = 1
>>> x
array([[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> x[:, 1:2] = 2
>>> x
array([[ 1., 2., 1.],
[ 1., 2., 1.]])
>>> x[1:2, 1:] = 3
>>> x
array([[ 1., 2., 1.],
[ 1., 3., 3.]])
>>> x[1:, 0:2] = np.zeros((1, 2))
>>> x
array([[ 1., 2., 1.],
[ 0., 0., 3.]])
>>> x[1, 2] = 4
>>> x
array([[ 1., 2., 1.],
[ 0., 0., 4.]])
>>> x[[0], [1, 2]] = 5
>>> x
array([[ 1., 5., 5.],
[ 0., 0., 4.]])
>>> x[::-1, 0:2:2] = [6]
>>> x
array([[ 6., 5., 5.],
[ 6., 0., 4.]])
For imformation related to boolean indexing, please refer to
https://docs.scipy.org/doc/numpy-1.17.0/reference/arrays.indexing.html.
"""
if isinstance(value, NDArray) and not isinstance(value, ndarray):
raise TypeError('Cannot assign mx.nd.NDArray to mxnet.numpy.ndarray')
if isinstance(key, bool): # otherwise will be treated as 0 and 1
key = array(key, dtype=_np.bool)
# Handle single boolean assign of matching dimensionality and size first for higher speed
# If the boolean array is mixed with other idices, it is instead expanded into (multiple)
# integer array indices and will be handled by advanced assign.
# Come before the check self.dim == 0 as it also handle the 0-dim case.
if isinstance(key, ndarray) and key.dtype == _np.bool:
return self._set_np_boolean_indexing(key, value)
# handle basic and advanced indexing
if self.ndim == 0:
if not isinstance(key, tuple) or len(key) != 0:
raise IndexError('scalar tensor can only accept `()` as index')
if isinstance(value, numeric_types):
self._full(value)
elif isinstance(value, ndarray) and value.size == 1:
if value.shape != self.shape:
value = value.reshape(self.shape)
value.copyto(self)
elif isinstance(value, (_np.ndarray, _np.generic)) and value.size == 1:
if isinstance(value, _np.generic) or value.shape != self.shape:
value = value.reshape(self.shape)
self._sync_copyfrom(value)
else:
raise ValueError('setting an array element with a sequence.')
else:
# For 0-d boolean indices: A new axis is added,
# but at the same time no axis is "used". So if we have True,
# we add a new axis (a bit like with np.newaxis). If it is
# False, we add a new axis, but this axis has 0 entries.
# prepend is defined to handle this case.
# prepend == _NDARRAY_NO_ZERO_DIM_BOOL_ARRAY/-1 means there is no 0-d boolean scalar