-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
85 lines (62 loc) · 2.35 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import torch.nn as nn
from torch.nn.modules.batchnorm import BatchNorm2d
import torchvision.transforms.functional as TF
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv= nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class UNET(nn.Module):
def __init__(self, in_channels= 3, out_channel= 1, features= [64, 128, 256, 512]):
super(UNET, self).__init__()
self.ups= nn.ModuleList()
self.downs = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size= 2, stride=2)
#downpart
for feature in features:
self.downs.append(DoubleConv(in_channels, feature))
in_channels= feature
#upsampling
for feature in reversed(features):
#upsampling
self.ups.append(nn.ConvTranspose2d(
feature*2, feature, kernel_size= 2, stride= 2
))
#Convolution Operation
self.ups.append(DoubleConv(feature*2, feature))
#bottom neck
self.bottleneck = DoubleConv(features[-1], features[-1]*2)
self.final_conv = nn.Conv2d(features[0], out_channel, 1)
#Here, X is the input
def forward(self, x):
skip_connections = []
for down in self.downs:
x = down(x)
skip_connections.append(x)
x= self.pool(x)
x= self.bottleneck(x)
skip_connections = skip_connections[::-1 ]
#iterating ups list by a step of= 2
for ind in range(0, len(self.ups), 2):
x= self.ups[ind] (x)
skip_connection = skip_connections[ind//2]
concat_skip= torch.cat((skip_connection, x), dim= 1)
x= self.ups[ind+1] (concat_skip)
return self.final_conv(x)
def test():
x= torch.randn((3, 1, 160, 160))
model = UNET(in_channels=1, out_channel=1)
preds = model(x)
print(preds.shape)
print(x.shape)
if __name__ == "__main__":
test()