-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcodecTrain.py
355 lines (280 loc) · 12.7 KB
/
codecTrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# Reference (https://github.com/kan-bayashi/ParallelWaveGAN/)
import os
import logging
import argparse
import torch
import soundfile as sf
import cupy as cp
import numpy as np
import scipy.signal
from torch.utils.data import DataLoader
from dataloader import CollaterAudio, CollaterAudioPair,CollaterAudioSet
from dataloader import SingleDataset #, MultiDataset
from models.autoencoder.AudioDec import Generator as generator_audiodec
from models.HiFiGAN_Generator import Generator as generator_hifigan
from models.vocoder.FASTRIR import Discriminator_RIR as discriminator_rir
from trainer.autoencoder import Trainer as TrainerAutoEncoder
from trainer.vocoder import Trainer as TrainerVocoder
# from trainer.denoise import Trainer as TrainerDenoise
from bin.train import TrainGAN
from losses import DiscriminatorAdversarialLoss
from losses import FeatureMatchLoss
from losses import GeneratorAdversarialLoss
from losses import MultiResolutionSTFTLoss
# from losses import MultiMelSpectrogramLoss
# from losses import MultiWindowShapeLoss
from losses import TimeDomainMSELoss
from losses import EnergyDecayCurveLoss
from losses import STOILoss
def generate_complementary_filterbank(
fc=[125.0, 250.0, 500.0, 1000.0, 2000.0, 4000.0, 8000.0],
fs=48000,
filter_order=4,
filter_length=16384,
power=True):
"""Return a zero-phase power (or amplitude) complementary filterbank via Butterworth prototypes.
Parameters:
fc - filter center frequencies
fs - sampling rate
filter_order - order of the prototype Butterworth filters
filter_length - length of the resulting zero-phase FIR filters
power - boolean to set if the filter is power or amplitude complementary
"""
# sort in increasing cutoff
fc = np.sort(fc)
assert fc[-1] <= fs/2
numFilts = len(fc)
nbins = filter_length
signal_z1 = np.zeros(2 * nbins)
signal_z1[0] = 1
irBands = np.zeros((2 * nbins, numFilts))
for i in range(numFilts - 1):
wc = fc[i] / (fs/2.0)
# if wc >= 1:
# wc = .999999
B_low, A_low = scipy.signal.butter(filter_order, wc, btype='low')
B_high, A_high = scipy.signal.butter(filter_order, wc, btype='high')
# Store the low band
irBands[:, i] = scipy.signal.lfilter(B_low, A_low, signal_z1)
# Store the high
signal_z1 = scipy.signal.lfilter(B_high, A_high, signal_z1)
# Repeat for the last band of the filter bank
irBands[:, -1] = signal_z1
# Compute power complementary filters
if power:
ir2Bands = np.real(np.fft.ifft(np.square(np.abs(np.fft.fft(irBands, axis=0))), axis=0))
else:
ir2Bands = np.real(np.fft.ifft(np.abs(np.abs(np.fft.fft(irBands, axis=0))), axis=0))
ir2Bands = np.concatenate((ir2Bands[nbins:(2 * nbins), :], ir2Bands[0:nbins, :]), axis=0)
return ir2Bands
class TrainMain(TrainGAN):
def __init__(self, args,):
super(TrainMain, self).__init__(args=args,)
self.train_mode = self.config.get('train_mode', 'autoencoder')
self.model_type = self.config.get('model_type', 'symAudioDec')
self.data_path = self.config['data']['data_path']
# DATA LOADER
def initialize_data_loader(self):
logging.info(f"Loading datasets... (batch_lenght: {self.batch_length})")
if self.train_mode in ['autoencoder', 'vocoder']:
train_set = self._audio_set('train')
valid_set = self._audio_set('valid')
collater = CollaterAudioSet(batch_length=self.batch_length)
else:
raise NotImplementedError(f"Train mode: {self.train_mode} is not supported!")
logging.info(f"The number of training files = {len(train_set)}.")
logging.info(f"The number of validation files = {len(valid_set)}.")
dataset = {'train': train_set, 'dev': valid_set}
self._data_loader(dataset, collater)
def _data_loader(self, dataset, collater):
self.data_loader = {
'train': DataLoader(
dataset=dataset['train'],
shuffle=True,
collate_fn=collater,
batch_size=self.config['batch_size'],
num_workers=self.config['num_workers'],
pin_memory=self.config['pin_memory'],
),
'dev': DataLoader(
dataset=dataset['dev'],
shuffle=False,
collate_fn=collater,
batch_size=self.config['batch_size'],
num_workers=self.config['num_workers'],
pin_memory=self.config['pin_memory'],
),
}
def _audio_set(self, subset, subset_num=-1, return_utt_id=False):
audio_pickle_file = self.config['data']['subset'][subset]
params = {
'files': [self.data_path,audio_pickle_file], # (main, sub) #audio_dir,
'query': "*.wav",
'load_fn': sf.read,
'return_utt_id': return_utt_id,
'subset_num': subset_num,
}
return SingleDataset(**params)
# MODEL ARCHITECTURE
def define_model(self):
# generator
generator = self._define_generator(self.model_type)
self.model['generator'] = generator.to(self.device)
# discriminator
discriminator = self._define_discriminator(self.model_type)
self.model['discriminator'] = discriminator.to(self.device)
# optimizer
self._define_optimizer_scheduler()
#self._show_setting()
def _define_generator(self, model_type):
generator = generator_audiodec
return generator(**self.config['generator_params'])
def _define_discriminator(self, model_type):
discriminator = discriminator_rir
return discriminator()
def _define_optimizer_scheduler(self):
generator_optimizer_class = getattr(
torch.optim,
self.config['generator_optimizer_type']
)
discriminator_optimizer_class = getattr(
torch.optim,
self.config['discriminator_optimizer_type']
)
self.optimizer = {
'generator': generator_optimizer_class(
self.model['generator'].parameters(),
**self.config['generator_optimizer_params'],
),
'discriminator': discriminator_optimizer_class(
self.model['discriminator'].parameters(),
**self.config['discriminator_optimizer_params'],
),
}
generator_scheduler_class = getattr(
torch.optim.lr_scheduler,
self.config.get('generator_scheduler_type', "StepLR"),
)
discriminator_scheduler_class = getattr(
torch.optim.lr_scheduler,
self.config.get('discriminator_scheduler_type', "StepLR"),
)
self.scheduler = {
'generator': generator_scheduler_class(
optimizer=self.optimizer['generator'],
**self.config['generator_scheduler_params'],
),
'discriminator': discriminator_scheduler_class(
optimizer=self.optimizer['discriminator'],
**self.config['discriminator_scheduler_params'],
),
}
# CRITERIA
def define_criterion(self):
self.criterion = {
'gen_adv': GeneratorAdversarialLoss(
**self.config['generator_adv_loss_params']).to(self.device),
'dis_adv': DiscriminatorAdversarialLoss(
**self.config['discriminator_adv_loss_params']).to(self.device),
}
if self.config.get('use_feat_match_loss', False):
self.criterion['feat_match'] = FeatureMatchLoss(
**self.config.get('feat_match_loss_params', {}),
).to(self.device)
if self.config.get('use_stft_loss', False) or self.config.get('use_stft_loss_rir', False):
self.criterion['stft'] = MultiResolutionSTFTLoss(**self.config['stft_loss_params'],).to(self.device)
if self.config.get('use_mse_loss', False) or self.config.get('use_mse_loss_rir', False):
self.criterion['mse'] = TimeDomainMSELoss().to(self.device)
if self.config.get('use_edc_loss', False) or self.config.get('use_edc_loss_rir', False):
self.criterion['edc'] = EnergyDecayCurveLoss().to(self.device)
# TRAINER
def define_trainer(self):
bands = [125, 250, 500, 1000, 2000, 4000] # which frequency bands are we interested in
filter_length = 16384 # a magic number, not need to tweak this much
fs =16000
# only generate filters once and keep using them, that means you need to know the samplerate beforehand or convert to a fixed samplerate
filters = generate_complementary_filterbank(fc=bands, fs=fs, filter_order=4, filter_length=filter_length, power=True)
filters = cp.asarray([[filters]])
if self.train_mode in ['autoencoder']:
trainer = TrainerAutoEncoder
elif self.train_mode in ['vocoder']:
trainer = TrainerVocoder
# elif self.train_mode in ['denoise']:
# trainer = TrainerDenoise
else:
raise NotImplementedError(f"Train mode: {self.train_mode} is not supported for Trainer!")
trainer_parameters = {}
trainer_parameters['steps'] = 0
trainer_parameters['epochs'] = 0
trainer_parameters['filters'] = filters
trainer_parameters['data_loader'] = self.data_loader
trainer_parameters['model'] = self.model
trainer_parameters['criterion'] = self.criterion
trainer_parameters['optimizer'] = self.optimizer
trainer_parameters['scheduler'] = self.scheduler
trainer_parameters['config'] = self.config
trainer_parameters['device'] = self.device
self.trainer = trainer(**trainer_parameters)
# MODEL INITIALIZATION
def initialize_model(self):
initial = self.config.get("initial", "")
if os.path.exists(self.resume): # resume from trained model
self.trainer.load_checkpoint(self.resume)
logging.info(f"Successfully resumed from {self.resume}.")
elif os.path.exists(initial): # initial new model with the pre-trained model
self.trainer.load_checkpoint(initial, load_only_params=True)
logging.info(f"Successfully initialize parameters from {initial}.")
else:
logging.info("Train from scrach")
# load the pre-trained encoder for vocoder training
if self.train_mode in ['vocoder']:
analyzer_checkpoint = self.config.get("analyzer", "")
assert os.path.exists(analyzer_checkpoint), f"Analyzer {analyzer_checkpoint} does not exist!"
analyzer_config = self._load_config(analyzer_checkpoint)
self._initialize_analyzer(analyzer_config, analyzer_checkpoint)
def _initialize_analyzer(self, config, checkpoint):
model_type = config.get('model_type', 'symAudioDec')
if model_type in ['symAudioDec', 'symAudioDecUniv']:
analyzer = generator_audiodec
else:
raise NotImplementedError(f"Model type: {model_type} is not supported for the analyzer!")
self.model['analyzer'] = analyzer(**config['generator_params']).to(self.device)
self.model['analyzer'].load_state_dict(
torch.load(checkpoint, map_location='cpu')['model']['generator'])
logging.info(f"Successfully load analyzer from {checkpoint}.")
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, required=True)
parser.add_argument("--tag", type=str, required=True)
parser.add_argument("--exp_root", type=str, default="exp")
parser.add_argument("--resume", default="", type=str, nargs="?",
help='checkpoint file path to resume training. (default="")',
)
parser.add_argument('--seed', default=1337, type=int)
parser.add_argument('--disable_cudnn', choices=('True','False'), default='False', help='Disable CUDNN')
args = parser.parse_args()
# initial train_main
train_main = TrainMain(args=args)
# get dataset
train_main.initialize_data_loader()
# define models, optimizers, and schedulers
train_main.define_model()
#################Have to modify below###############
# define criteria
train_main.define_criterion()
# define trainer
train_main.define_trainer()
# model initialization
train_main.initialize_model()
# run training loop
train_main.run()
if __name__ == "__main__":
main()