-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathutils.py
309 lines (246 loc) · 9.06 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# from https://github.com/jaywalnut310/vits
import os
import sys
import logging
import subprocess
import torch
import numpy as np
from omegaconf import OmegaConf
from scipy.io.wavfile import read
MATPLOTLIB_FLAG = False
logging.basicConfig(
stream=sys.stdout,
level=logging.INFO,
format='[%(levelname)s|%(filename)s:%(lineno)s][%(asctime)s] >>> %(message)s'
)
logger = logging
def load_checkpoint(checkpoint_path, rank=0, model_g=None, model_d=None, optim_g=None, optim_d=None):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
learning_rate = checkpoint_dict['learning_rate']
config = checkpoint_dict['config']
if model_g is not None:
model_g, optim_g = load_model(
model_g,
checkpoint_dict['model_g'],
optim_g,
checkpoint_dict['optimizer_g'])
if model_d is not None:
model_d, optim_d = load_model(
model_d,
checkpoint_dict['model_d'],
optim_d,
checkpoint_dict['optimizer_d'])
if rank == 0:
logger.info(
"Loaded checkpoint '{}' (iteration {})".format(
checkpoint_path,
iteration
)
)
return model_g, model_d, optim_g, optim_d, learning_rate, iteration, config
def load_checkpoint_diffsize(checkpoint_path, rank=0, model_g=None, model_d=None):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
learning_rate = checkpoint_dict['learning_rate']
config = checkpoint_dict['config']
if model_g is not None:
model_g = load_model_diffsize(
model_g,
checkpoint_dict['model_g'])
if model_d is not None:
model_d = load_model_diffsize(
model_d,
checkpoint_dict['model_d'])
if rank == 0:
logger.info(
"Loaded checkpoint '{}' (iteration {})".format(
checkpoint_path,
iteration
)
)
del checkpoint_dict
return model_g, model_d, learning_rate, iteration, config
def load_model_diffsize(model, model_state_dict):
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
for k, v in model_state_dict.items():
if k in state_dict and state_dict[k].size() == v.size():
state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(state_dict, strict=False)
else:
model.load_state_dict(state_dict, strict=False)
return model
def load_model(model, model_state_dict, optim, optim_state_dict):
if optim is not None:
optim.load_state_dict(optim_state_dict)
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
for k, v in model_state_dict.items():
if k in state_dict and state_dict[k].size() == v.size():
state_dict[k] = v
if hasattr(model, 'module'):
model.module.load_state_dict(state_dict)
else:
model.load_state_dict(state_dict)
return model, optim
def save_checkpoint(net_g, optim_g, net_d, optim_d, hps, epoch, learning_rate, save_path):
def get_state_dict(model):
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
return state_dict
torch.save({'model_g': get_state_dict(net_g),
'model_d': get_state_dict(net_d),
'optimizer_g': optim_g.state_dict(),
'optimizer_d': optim_d.state_dict(),
'config': str(hps),
'iteration': epoch,
'learning_rate': learning_rate}, save_path)
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
for k, v in scalars.items():
writer.add_scalar(k, v, global_step)
for k, v in histograms.items():
writer.add_histogram(k, v, global_step)
for k, v in images.items():
writer.add_image(k, v, global_step, dataformats='HWC')
for k, v in audios.items():
writer.add_audio(k, v, global_step, audio_sampling_rate)
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10, 2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def plot_alignment_to_numpy(alignment, info=None):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
interpolation='none')
fig.colorbar(im, ax=ax)
xlabel = 'Decoder timestep'
if info is not None:
xlabel += '\n\n' + info
plt.xlabel(xlabel)
plt.ylabel('Encoder timestep')
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def load_wav_to_torch(full_path):
sampling_rate, wav = read(full_path)
if len(wav.shape) == 2:
wav = wav[:, 0]
if wav.dtype == np.int16:
wav = wav / 32768.0
elif wav.dtype == np.int32:
wav = wav / 2147483648.0
elif wav.dtype == np.uint8:
wav = (wav - 128) / 128.0
wav = wav.astype(np.float32)
return torch.FloatTensor(wav), sampling_rate
def load_filepaths_and_text(filename, split="|"):
with open(filename, encoding='utf-8') as f:
filepaths_and_text = [line.strip().split(split) for line in f]
return filepaths_and_text
def get_hparams(args, init=True):
config = OmegaConf.load(args.config)
hparams = HParams(**config)
model_dir = os.path.join(hparams.train.log_path, args.model)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
hparams.model_name = args.model
hparams.model_dir = model_dir
config_save_path = os.path.join(model_dir, "config.yaml")
if init:
OmegaConf.save(config, config_save_path)
return hparams
def get_hparams_from_file(config_path):
config = OmegaConf.load(config_path)
hparams = HParams(**config)
return hparams
def check_git_hash(model_dir):
source_dir = os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(os.path.join(source_dir, ".git")):
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
source_dir
))
return
cur_hash = subprocess.getoutput("git rev-parse HEAD")
path = os.path.join(model_dir, "githash")
if os.path.exists(path):
saved_hash = open(path).read()
if saved_hash != cur_hash:
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
saved_hash[:8], cur_hash[:8]))
else:
open(path, "w").write(cur_hash)
def get_logger(model_dir, filename="train.log"):
global logger
logger = logging.getLogger(os.path.basename(model_dir))
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
h = logging.FileHandler(os.path.join(model_dir, filename))
h.setLevel(logging.DEBUG)
h.setFormatter(formatter)
logger.addHandler(h)
return logger
class HParams():
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()