-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmain.py
88 lines (77 loc) · 3.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from __future__ import print_function
import argparse
import os
import sys
import pickle as pkl
import torch
import torch.optim as optim
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
from envs import create_atari_env
from model import ActorCritic
from train import train
from test import test
import my_optim
import pdb
# Based on
# https://github.com/pytorch/examples/tree/master/mnist_hogwild
# Training settings
parser = argparse.ArgumentParser(description='A3C')
parser.add_argument('--lr', type=float, default=0.0001, metavar='LR',
help='learning rate (default: 0.0001)')
parser.add_argument('--batch_size', type=int, default=128,
help='required for batch.a3c (default: 128)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G',
help='discount factor for rewards (default: 0.99)')
parser.add_argument('--tau', type=float, default=1.00, metavar='T',
help='parameter for GAE (default: 1.00)')
parser.add_argument('--model_name', type=str, default='a3c',
help='used to save log file and model (default: a3c)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--num-processes', type=int, default=4, metavar='N',
help='how many training processes to use (default: 4)')
parser.add_argument('--num-steps', type=int, default=20, metavar='NS',
help='number of forward steps in A3C (default: 20)')
parser.add_argument('--max-episode-length', type=int, default=10000, metavar='M',
help='maximum length of an episode (default: 10000)')
parser.add_argument('--env-name', default='PongDeterministic-v3', metavar='ENV',
help='environment to train on (default: PongDeterministic-v3)')
parser.add_argument('--no-shared', default=False, metavar='O',
help='use an optimizer without shared momentum.')
parser.add_argument('--display', type=bool, default=False,
help='whether to use monitor and render ot not (default:False)')
parser.add_argument('--save_freq', type=int, default=20,
help='how many intervals to save teh model (default:20)')
parser.add_argument('--task', choices=['train', 'eval', 'develop'], default='train',
help='if use multi thread to train (default:True)')
parser.add_argument('--load_ckpt', type=str, default='ckpt/a3c/InvertedPendulum-v1.a3c.0.pkl')
if __name__ == '__main__':
args = parser.parse_args()
torch.manual_seed(args.seed)
env = create_atari_env(args.env_name)
shared_model = ActorCritic(
env.observation_space.shape[0], env.action_space)
shared_model.share_memory()
if args.no_shared:
optimizer = None
else:
optimizer = my_optim.SharedAdam(shared_model.parameters(), lr=args.lr)
optimizer.share_memory()
if args.task == 'train':
processes = []
p = mp.Process(target=test, args=(args.num_processes, args, shared_model))
p.start()
processes.append(p)
for rank in range(0, args.num_processes):
p = mp.Process(target=train, args=(rank, args, shared_model, optimizer))
p.start()
processes.append(p)
for p in processes:
p.join()
elif args.task == 'eval':
shared_model.load_state_dict(torch.load(args.load_ckpt))
test(args.num_processes, args, shared_model)
elif args.task == 'develop':
train(0, args, shared_model, optimizer)